Developing Quantum-Optical Measurements of Excitonic Coherence for Quantum Entanglement in Single Organic Molecules

开发单个有机分子中量子纠缠的激子相干性的量子光学测量

基本信息

  • 批准号:
    EP/V048805/1
  • 负责人:
  • 金额:
    $ 25.52万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    已结题

项目摘要

Organic semiconductors are carbon-based materials that have found widespread use in organic light emitting diodes, solar cells, lasers, and field effect transistors. Excited electronic states in organic semiconductors are delocalised electron hole pairs, called excitons. Very initially these excitons are formed with their partial molecular orbital contributions all perfectly in phase, a quantum mechanically coherent object. Subsequent interactions with the environment dephase the components, collapsing the exciton wavefunction into a classical object. Measurement of this collapse and identifying chemical structures that can preserve coherence long enough for it to be harnessed for quantum entanglement are very challenging.In this proposal novel quantum-optical measurements of excitonic coherence in organic semiconductors will be developed. This will be achieved by measuring the second order photoluminescence intensity cross-correlations in a Hanbury Brown and Twiss geometry of single molecules as a function of energy and time. In doing so, state coupling and state coherences will be measured and chemical structures that can preserve them identified. Two systems will be explored, conjugated molecular dyads where strong coupling exists between the states, and covalently linked dimers where exciton delocalisation occurs over larger distances. The valuable new knowledge that is obtained by working at the single molecule level with novel quantum-optical techniques will realise advances in the fundamental understanding of the nature of excitons, and highlight advantageous ways their properties can be chemically engineered for quantum applications.
有机半导体是碳基材料,广泛应用于有机发光二极管、太阳能电池、激光器和场效应晶体管。有机半导体中的激发电子态是离域电子空穴对,称为激子。最初,这些激子是以其部分分子轨道贡献完全同相形成的,是一个量子力学相干物体。随后与环境的相互作用使组件失相,将激子波函数塌缩成经典物体。测量这种塌缩并识别可以保持足够长的相干性以使其用于量子纠缠的化学结构非常具有挑战性。在本提案中,将开发有机半导体中激子相干性的新型量子光学测量。这将通过测量单分子汉伯里布朗和特维斯几何中的二阶光致发光强度互相关性作为能量和时间的函数来实现。在此过程中,将测量状态耦合和状态相干性,并识别可以保存它们的化学结构。将探索两个系统,即状态之间存在强耦合的共轭分子二元体,以及激子离域发生在较大距离上的共价连接二聚体。通过在单分子水平上利用新颖的量子光学技术获得的有价值的新知识将实现对激子本质的基本理解的进步,并强调可以通过化学工程对其特性进行量子应用的有利方式。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A red-orange carbazole-based iridium(III) complex: Synthesis, thermal, optical and electrochemical properties and OLED application
  • DOI:
    10.1016/j.jorganchem.2021.122004
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    2.3
  • 作者:
    Nuray Altinolcek;Ahmet Battal;Mustafa Tavaslı;Joseph Cameron;W. Peveler;Holly A Yu;P. Skabara;
  • 通讯作者:
    Nuray Altinolcek;Ahmet Battal;Mustafa Tavaslı;Joseph Cameron;W. Peveler;Holly A Yu;P. Skabara;
Hybrid light-matter chiral polariton state and the electromagnetic enantiomers
杂化光-物质手性极化子态和电磁对映体
  • DOI:
    10.21203/rs.3.rs-2947098/v1
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kumar R
  • 通讯作者:
    Kumar R
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gordon James Hedley其他文献

Gordon James Hedley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gordon James Hedley', 18)}}的其他基金

Measuring Nanoscale Exciton Motion & Annihilation in Single Molecules with Photon Statistics
测量纳米级激子运动
  • 批准号:
    EP/V004921/1
  • 财政年份:
    2021
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Research Grant

相似国自然基金

原子-微纳波导系统中的非厄米非线性与量子光学效应研究
  • 批准号:
    12374303
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
湍流大气信道下轨道角动量编码量子密钥分发的态依赖衍射及自适应光学校正
  • 批准号:
    62301530
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于光学参量放大器的高灵敏量子干涉仪
  • 批准号:
    62305056
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子点光学膜的原位动态高光谱监测与主动学习优化
  • 批准号:
    22305015
  • 批准年份:
    2023
  • 资助金额:
    20 万元
  • 项目类别:
    青年科学基金项目
基于里德堡单光子源阵列的量子光学研究
  • 批准号:
    12374329
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Developing a fiber optical quantum interface using trapped atoms and nanofiber based photonic crystal cavity
使用捕获原子和基于纳米纤维的光子晶体腔开发光纤量子接口
  • 批准号:
    15H05462
  • 财政年份:
    2015
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
Developing a rice line with high leaf photosynthetic capacity equivalent to that of corn by pyramiding loci for enhancing photosynthetic rate
通过金字塔位点提高光合速率开发具有与玉米相当的高叶片光合能力的水稻品系
  • 批准号:
    26660013
  • 财政年份:
    2014
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Grant-in-Aid for Challenging Exploratory Research
Study of the property of low-defect-density quantum dots for the purpose of developing high efficiency optical devices.
研究低缺陷密度量子点的特性,以开发高效光学器件。
  • 批准号:
    23560354
  • 财政年份:
    2011
  • 资助金额:
    $ 25.52万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Ultrahigh Resolution Optical Barcode
超高分辨率光学条形码
  • 批准号:
    8146803
  • 财政年份:
    2005
  • 资助金额:
    $ 25.52万
  • 项目类别:
Ultrahigh Resolution Optical Barcode
超高分辨率光学条形码
  • 批准号:
    8147008
  • 财政年份:
    2005
  • 资助金额:
    $ 25.52万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了