New Quantum Materials from High Pressure Synthesis
高压合成的新型量子材料
基本信息
- 批准号:EP/V02972X/1
- 负责人:
- 金额:$ 95.18万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Electronic technologies such as mobile phones, tablets and laptops have become indispensable to modern life, with improvements in performance, size, energy-consumption etc. occurring year-on-year. Within these devices are materials with particular electronic properties such as semiconductors and magnets. Their characteristics and performance are largely limited by the quantum mechanical behaviour of single or a few electrons, as elucidated in the early 20th century. Now in the 21st century there is an increasing drive towards the use of a new generation of quantum technologies based upon more sophisticated effects such as the correlation or entanglement of multiple quantum states, e.g. in a quantum computer.Underlying these developments is the search for new quantum materials where electron-electron correlation gives rise to entangled or correlated ground states such as long range orders of atomic spin, orbital, or charge states, or fluid-like states like superconductors and quantum spin liquids (QSLs) in which many possible paired quantum states are superimposed. Topological effects have been used to discover further types of quantum material in recent years, through effects such Kitaev coupling which depends upon the directions of pairwise magnetic interactions within a material.This project aims to synthesise new quantum materials within the family of perovskite oxides using high pressure reaction methods. Perovskite oxides have structures based on the ABO3 arrangement of the mineral CaTiO3. They have enormous chemical and structural flexibility as well as outstanding physical and chemical properties, which are often the best in their field, e.g. ferroelectric BaTiO3, YBa2Cu3O7 high-Tc superconductor, (La,Sr)MnO3 and Sr2FeMoO6 CMR (colossal magnetoresistance) for spintronics, multiferroic BiFeO3, and mixed conductors such as doped LaCrO3 for fuel cells. We will target perovskites based on heavy transition metals with electronic states that have small spins, which amplifies quantum behaviour, and strong spin-orbit coupling that gives rise to strong anisotropy (local directionality) in properties that accentuate topological influences. Chemical ordering of cations like that of Fe/Mo in Sr2FeMoO6, known as a double perovskite derivative, will be used to create interesting network topologies that tend to frustrate simple 'up-down' magnetic orders, making quantum fluctuations more dominant.High pressure (HP) synthesis methods will be used as these are known to be effective for stabilising perovskite type materials, and also for generating cation ordered networks within the basic ABO3 arrangement. Proof of concept experiments have shown that 1:1 or 1:2 orders of cations on the perovskite B sites, and also 1:1 ordering of transition metal and other types of cation at A sites can be generated at HP. A 'double double perovskite' arrangement we discovered even has 1:1 A and B site orders, e.g. CaMnFeReO6, and so offers many permutations for discovery of new quantum materials. Oxide materials are incompressible so GPa-scale pressures (1 GPa = 10,000 atmospheres) are needed to change their chemistry, structures and properties significantly. Our ability to reach pressures up to 22 GPa (whereas many early and even present-day groups can only access 6-8 GPa) will enable us to discover these new materials. We will also collaborate with external partner groups to make other types of oxide and nitride materials that show interesting and useful magnetic, catalytic, and energy-related properties.
移动电话,平板电脑和笔记本电脑等电子技术对于现代生活来说是必不可少的,并且同比进行性能,大小,能量消费等的改善。在这些设备中,具有具有特定电子特性的材料,例如半导体和磁铁。它们的特征和性能在很大程度上受到了单个或几个电子的量子机械行为的限制,该行为在20世纪初期被阐明。现在,在21世纪,基于更复杂的效果,例如多种量子状态的相关性或纠缠,例如在量子计算机中。在这些发展之间寻找新的量子材料,其中电子电子相关会导致纠缠或相关的接地状态,例如原子旋转,轨道或电荷状态的远距离顺序,或类似超导体的流体状态(例如超导体和量子旋转液体(QSL)(QSL)),其中许多可能的配对量子是超级量子。近年来,拓扑作用已用于发现量子材料的进一步类型,这些效果是通过基于材料中成对磁相互作用的方向的kitaev耦合的效果。该项目旨在使用高压反应方法合成钙钛矿氧化物家族中的新量子材料。钙钛矿氧化物具有基于矿物catio3的ABO3排列的结构。它们具有巨大的化学和结构柔韧性以及出色的物理和化学特性,通常是其领域中最好的,例如铁电batio3,YBA2CU3O7高-TC超导体,(LA,SR)MNO3和SR2FEMOO6 CMR(巨大的磁磁性),用于旋转的多效性BifeO3,以及用于燃料电池的混合导体。我们将基于具有小旋转的电子状态的重型过渡金属靶向钙钛矿,从而放大量子行为,并在强调拓扑拓扑影响的性质中引起强大的各向异性(局部方向性)。 Chemical ordering of cations like that of Fe/Mo in Sr2FeMoO6, known as a double perovskite derivative, will be used to create interesting network topologies that tend to frustrate simple 'up-down' magnetic orders, making quantum fluctuations more dominant.High pressure (HP) synthesis methods will be used as these are known to be effective for stabilising perovskite type materials, and also for generating cation ordered networks within the basic ABO3安排。概念验证实验表明,钙钛矿B位点上的阳离子的1:1或1:2级,也可以在HP上生成1:1的过渡金属和其他类型的阳离子的排序。我们发现的“双双钙钛矿”布置甚至有1:1 A和B网站订单,例如CAMNFEREO6,因此提供了许多发现新量子材料的排列。氧化物材料不可压缩,因此需要大量改变其化学,结构和特性的GPA规模压力(1 GPA = 10,000个气氛)。我们达到22 GPA压力的能力(而许多早期甚至当今的小组只能访问6-8 GPA),这将使我们能够发现这些新材料。我们还将与外部合作伙伴群体合作,制作其他类型的氧化物和氮化物材料,这些材料显示出有趣且有用的磁性,催化和与能量相关的特性。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
CaFeFeNbO6 - an iron-based double double perovskite.
CaFeFeNbO6 - 一种铁基双双钙钛矿。
- DOI:10.1039/d3cc01115a
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Ji K
- 通讯作者:Ji K
Giant coercivity and spin clusters in high pressure polymorphs of Mn 2 LiReO 6 .
Mn 2 LiReO 6 高压多晶型物中的巨大矫顽力和自旋团簇。
- DOI:10.1039/d2tc00451h
- 发表时间:2022
- 期刊:
- 影响因子:6.4
- 作者:Solana-Madruga E
- 通讯作者:Solana-Madruga E
Double and double double perovskites in the RMnMnTaO6 series
RMnMnTaO6 系列中的双钙钛矿和双双钙钛矿
- DOI:10.1016/j.jssc.2022.123329
- 发表时间:2022
- 期刊:
- 影响因子:3.3
- 作者:Ji K
- 通讯作者:Ji K
A New Cation-Ordered Structure Type with Multiple Thermal Redistributions in Co 2 InSbO 6
Co 2 InSbO 6 中具有多重热再分布的新型阳离子有序结构
- DOI:10.1002/ange.202203062
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Ji K
- 通讯作者:Ji K
1 : 1 Ca 2+ :Cu 2+ A-site Order in a Ferrimagnetic Double Double Perovskite
亚铁磁性双双钙钛矿中的 1 : 1 Ca 2 :Cu 2 A 位顺序
- DOI:10.1002/ange.202209497
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Solana-Madruga E
- 通讯作者:Solana-Madruga E
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
J Attfield其他文献
J Attfield的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('J Attfield', 18)}}的其他基金
Exploring Electronic Materials with Extreme Conditions
探索极端条件下的电子材料
- 批准号:
EP/R013004/1 - 财政年份:2018
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
High Pressure Synthesis of All Transition Metal Oxide Perovskites and Related Materials
全过渡金属氧化物钙钛矿及相关材料的高压合成
- 批准号:
EP/P021786/1 - 财政年份:2017
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
Solid-state chemistry for transition-metal oxides: Exploring for new materials with novel functionalities
过渡金属氧化物的固态化学:探索具有新颖功能的新材料
- 批准号:
EP/N029119/1 - 财政年份:2016
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
New Materials from High Pressure and Beyond
来自高压及更高压力的新材料
- 批准号:
EP/K014331/1 - 财政年份:2013
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
New Electronic Materials from Extreme Conditions
极端条件下的新型电子材料
- 批准号:
EP/J00099X/1 - 财政年份:2012
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
High Pressure Synthesis of New Superconductors and Related Materials
新型超导体及相关材料的高压合成
- 批准号:
EP/G030332/1 - 财政年份:2009
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
Functional Oxide Materials Discovery using Extreme Conditions
使用极端条件发现功能氧化物材料
- 批准号:
EP/G048584/1 - 财政年份:2009
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
High Pressure and Temperature Synthesis of New Electronic Perovskite Oxides
新型电子钙钛矿氧化物的高压高温合成
- 批准号:
EP/C528506/1 - 财政年份:2006
- 资助金额:
$ 95.18万 - 项目类别:
Research Grant
相似国自然基金
碳量子点修饰叠氮化铜光敏含能材料的创制及其特征能量引发机制
- 批准号:22305100
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型磁性和关联拓扑量子材料电子结构的研究与调控
- 批准号:12374454
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
具有光控电导量子化特性的光电忆阻材料及类视觉神经形态器件研究
- 批准号:52372137
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
有平带的二维范德瓦尔斯超导材料中的量子几何效应
- 批准号:12364022
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
狄拉克电子材料量子输运性质的应变调控
- 批准号:12304197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Quantum Simulation: A New Era for Materials Science
量子模拟:材料科学的新时代
- 批准号:
10107055 - 财政年份:2024
- 资助金额:
$ 95.18万 - 项目类别:
Small Business Research Initiative
革新的カーボン量子ドット蛍光材料の液相合成法の開拓
开发创新碳量子点荧光材料的液相合成方法
- 批准号:
24K08570 - 财政年份:2024
- 资助金额:
$ 95.18万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
超狭帯域発光を可能にする革新的遅延蛍光材料の創製
创建可实现超窄带发射的创新延迟荧光材料
- 批准号:
22KF0284 - 财政年份:2023
- 资助金额:
$ 95.18万 - 项目类别:
Grant-in-Aid for JSPS Fellows
Development of a new program combining path integral method and machine learning for the development of hydrogen storage materials
结合路径积分法和机器学习的储氢材料开发新程序的开发
- 批准号:
23K13827 - 财政年份:2023
- 资助金额:
$ 95.18万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
New Routes from Topological Materials to Quantum Computing
从拓扑材料到量子计算的新路线
- 批准号:
RGPIN-2018-04380 - 财政年份:2022
- 资助金额:
$ 95.18万 - 项目类别:
Discovery Grants Program - Individual