Advancing Location Accuracy via Collimated Nuclear Assay for Decommissioning Robotic Applications (ALACANDRA)
通过用于退役机器人应用的准直核分析提高定位精度 (ALACANDRA)
基本信息
- 批准号:EP/V026941/1
- 负责人:
- 金额:$ 86.79万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Radioactivity is all around us but it is usually dispersed such that it poses little risk to human health. However, past industrial activities associated with nuclear weapons production, the manufacture of fuel for nuclear power stations and the management of radioactive waste from these activities have resulted in a significant number of highly contaminated facilities. The level of contamination can be so great that people cannot enter because the radiation level is too high. Further, because we do not understand the long-term risks associated with low-level radiation exposures, entry to place contaminated less is often discouraged to minimise any risk that there might be. Matters are complicated further because difficulty getting inside complicates our ability to understand exactly what needs to be done to make these places safe.Some of these facilities are not safe because they are old and were not designed to last this long. It is important to make them safe now to ensure radioactivity does not get out, and because the longer this takes the more difficult and expensive it becomes as new problems arise. However, this will take a long time to complete: at Sellafield, the time needed to complete this is forecast to be 120 years. This means that if they are not dealt with effectively now, these problems will fall to future generations; hence, from an ethical standpoint, the imperative is to prevent this by action now.One way to understand these radiological hazards is to send in a robot. Great advances have been made in this regard as a result of recent research, done in part by the people leading this proposal. However, simply transporting a radiation detector into a place and trying to determine where it detects the most radiation does not work for two important reasons: Firstly, radioactivity in these places is often dispersed, meaning that it is not concentrated in one place that might be dealt with easily and quickly. Instead, contamination arises from leaks, splashes, tide marks in vessels and it migrates into porous materials, yielding a 3D distribution in space. Radiation detector systems and imagers have difficulty with this because they often provide an assessment from a particular perspective that may not tell us everything we need to know. Secondly, contaminated places are often cluttered with process equipment, detritus and construction materials. These can cause the radiation to scatter and also absorb it. This influences the 'picture' and can influence how much radioactivity is thought to be present.With a human 'in the loop' - in the space with the contamination - they could improvise by moving to different vantage points, moving debris out of the way and by inferring what is involved from what they see. This not being possible, the use of a commercial robotic platform constitutes a way by which this might be replicated. For example, by assessments from a number of complementary vantage points and fusing the data obtained from this variety of perspectives. However, it is important to maintain human oversight of these operations by driving the robot rather than affording it full autonomy in case difficulties arise in recovering it etc. This raises the question: How can we interpret robot-derived information from a variety of perspectives, from a cluttered space contaminated with dispersed radioactivity, to help us understand what hazards may exist, quickly and effectively? Our research appeals directly to this requirement: we suspect that a detector's response is related to a relatively simple combination of sub-responses, as if the contamination were comprised of pixels of contamination. By advancing our interpretation of the combined influence of these on a radiation detector system configured by a robot, we hope to connect what we observe with nature of the radioactivity that is present, hence enabling robots to assist in the clean-up of these spaces more efficiently.
放射性无处不在,但通常被分散,因此对人类健康的风险很小。但是,过去与核武器生产有关的工业活动,核电站的燃料生产以及从这些活动中的放射性废物管理导致了大量高度污染的设施。污染的水平是如此之大,以至于人们无法进入,因为辐射水平太高。此外,由于我们不了解与低级辐射暴露相关的长期风险,因此通常不鼓励进入被污染的污染物少,以最大程度地降低可能存在的任何风险。事情进一步复杂,因为难以进入内部使我们能够确切地了解使这些地方安全需要做的事情的能力变得复杂。这些设施中的某些设施不安全,因为它们很老,并且并没有持续这么长时间。现在重要的是要确保它们安全以确保放射性不会脱颖而出,而且因为这种情况的时间越长,随着新问题的出现,它就会变得更加困难和昂贵。但是,这将需要很长时间才能完成:在Sellafield,完成此任务所需的时间将是120年。这意味着,如果他们现在没有有效处理,这些问题将落到后代。因此,从道德的角度来看,必须立即采取行动来防止这种情况。理解这些放射学危害的一种方法是发送机器人。由于最近的研究,这方面已经取得了巨大的进步,部分是由领导该建议的人们所做的。但是,只需将辐射探测器运送到一个地方,并试图确定其检测到最大的辐射在哪里不起作用,这两个重要原因:首先,这些地方的放射性经常被分散,这意味着它不集中在一个可能容易,快速处理的地方。取而代之的是,污染源于泄漏,飞溅,潮汐痕迹,并迁移到多孔材料中,在太空中产生3D分布。辐射探测器系统和成像器对此有困难,因为它们通常从特定的角度提供评估,这些角度可能无法告诉我们我们需要知道的一切。其次,受污染的地方通常用工艺设备,碎屑和建筑材料混乱。这些会导致辐射散射并吸收它。这会影响“图片”,并可以影响人们认为存在多少放射性。在循环中的人类“在污染的空间中”,它们可以通过移动到不同的有利位置,将碎屑移开并从所看到的东西中推断出涉及的内容来即兴创造。这是不可能的,商业机器人平台的使用构成了一种可以复制的方式。例如,通过从多个互补的有利位点进行评估,并融合从这种各种角度获得的数据。但是,重要的是要通过驱动机器人来维持对这些操作的监督,而不是在恢复它的困难时提供全部自主权。这引发了一个问题:我们如何从各种角度来解释机器人衍生的信息,从杂乱无章的空间中受到分散的放射性污染的杂物,以帮助我们快速地了解什么危害,并有效地了解,可以快速和有效地了解?我们的研究直接提出了这一要求:我们怀疑探测器的响应与亚子子的相对简单组合有关,好像污染物由污染像素组成。通过推进我们对这些机器人配置的辐射探测器系统的综合影响的解释,我们希望将观察到的内容与存在的放射性性质联系起来,从而使机器人能够更有效地帮助清理这些空间。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lessons learned: Symbiotic autonomous robot ecosystem for nuclear environments
- DOI:10.1049/csy2.12103
- 发表时间:2023-12-01
- 期刊:
- 影响因子:0
- 作者:Mitchell,Daniel;Emor Baniqued,Paul Dominick;Jiang,Zhengyi
- 通讯作者:Jiang,Zhengyi
Use of Gaussian process regression for radiation mapping of a nuclear reactor with a mobile robot.
- DOI:10.1038/s41598-021-93474-4
- 发表时间:2021-07-07
- 期刊:
- 影响因子:4.6
- 作者:West A;Tsitsimpelis I;Licata M;Jazbec AE;Snoj L;Joyce MJ;Lennox B
- 通讯作者:Lennox B
Improved localization of radioactivity with a normalized sinc transform
通过归一化 sinc 变换改进放射性定位
- DOI:10.3389/fnuen.2022.989361
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Tsitsimpelis I
- 通讯作者:Tsitsimpelis I
A GPS-enabled seabed sediment sampler: Recovery efficiency and efficacy.
支持 GPS 的海底沉积物采样器:回收效率和功效。
- DOI:10.1063/5.0077269
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Hunt WJ
- 通讯作者:Hunt WJ
Localising and identifying radionuclides via energy-resolved angular photon responses
- DOI:10.1016/j.nima.2023.168771
- 发表时间:2023-10-20
- 期刊:
- 影响因子:1.4
- 作者:Tsitsimpelis,Ioannis;Alton,Tilly;Joyce,Malcolm J.
- 通讯作者:Joyce,Malcolm J.
共 7 条
- 1
- 2
Malcolm Joyce的其他基金
Capture gamma-ray Assessment in Nuclear Energy (C-GANE)
核能中捕获伽马射线评估 (C-GANE)
- 批准号:EP/X038327/1EP/X038327/1
- 财政年份:2023
- 资助金额:$ 86.79万$ 86.79万
- 项目类别:Research GrantResearch Grant
JUNO: A Network for Japan - UK Nuclear Opportunities
JUNO:日本-英国核机会网络
- 批准号:EP/P013600/2EP/P013600/2
- 财政年份:2023
- 资助金额:$ 86.79万$ 86.79万
- 项目类别:Research GrantResearch Grant
Autonomous Inspection for Responsive and Sustainable Nuclear Fuel Manufacture (AIRS-NFM)
响应性和可持续核燃料制造的自主检查(AIRS-NFM)
- 批准号:EP/V051059/1EP/V051059/1
- 财政年份:2021
- 资助金额:$ 86.79万$ 86.79万
- 项目类别:Research GrantResearch Grant
AMS-UK: A UK Accelerator Mass Spectrometry Facility for Nuclear Fission Research
AMS-UK:英国用于核裂变研究的加速器质谱设施
- 批准号:EP/T01136X/1EP/T01136X/1
- 财政年份:2019
- 资助金额:$ 86.79万$ 86.79万
- 项目类别:Research GrantResearch Grant
JUNO: A Network for Japan - UK Nuclear Opportunities
JUNO:日本-英国核机会网络
- 批准号:EP/P013600/1EP/P013600/1
- 财政年份:2016
- 资助金额:$ 86.79万$ 86.79万
- 项目类别:Research GrantResearch Grant
Digital fast neutron assay of uranium
铀的数字快中子测定
- 批准号:EP/P008062/1EP/P008062/1
- 财政年份:2016
- 资助金额:$ 86.79万$ 86.79万
- 项目类别:Research GrantResearch Grant
Technology development to evaluate dose rate distribution in PCV and to search for fuel debris submerged in water
开发技术来评估 PCV 中的剂量率分布并寻找淹没在水中的燃料碎片
- 批准号:EP/N017749/1EP/N017749/1
- 财政年份:2015
- 资助金额:$ 86.79万$ 86.79万
- 项目类别:Research GrantResearch Grant
Imaging and location of fast neutron emissions by real-time time-of-flight
通过实时飞行时间对快中子发射进行成像和定位
- 批准号:EP/M02489X/1EP/M02489X/1
- 财政年份:2015
- 资助金额:$ 86.79万$ 86.79万
- 项目类别:Research GrantResearch Grant
A centre for Advanced Digital Radiometric Instrumentation for Applied Nuclear Activities (ADRIANA)
应用核活动先进数字辐射仪器中心 (ADRIANA)
- 批准号:EP/L025671/1EP/L025671/1
- 财政年份:2014
- 资助金额:$ 86.79万$ 86.79万
- 项目类别:Research GrantResearch Grant
DISTINGUISH: Detection of explosive substances by tomographic inspection using neutron and gamma-ray spectroscopy
区别:使用中子和伽马射线光谱仪通过断层扫描检测爆炸性物质
- 批准号:EP/C008022/1EP/C008022/1
- 财政年份:2006
- 资助金额:$ 86.79万$ 86.79万
- 项目类别:Research GrantResearch Grant
相似国自然基金
硅藻18S rDNA用于溺死地点推断人工智能预测模型的构建及法医学应用研究
- 批准号:82371901
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
中国恐龙骨骼化石时空分布综合研究
- 批准号:42372030
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
计算病理学技术在法医学自动化硅藻检验及溺水地点推断中的应用研究
- 批准号:82371902
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
城市“职住服”空间关系影响下的居民出行碳排放核算及机理认知研究
- 批准号:52308046
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多地点动态集结任务的空海无人系统智能协同控制研究
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
相似海外基金
Advancing Location Accuracy via Collimated Nuclear Assay for Decommissioning Robotic Applications (ALACANDRA)
通过用于退役机器人应用的准直核分析提高定位精度 (ALACANDRA)
- 批准号:EP/V026925/1EP/V026925/1
- 财政年份:2021
- 资助金额:$ 86.79万$ 86.79万
- 项目类别:Research GrantResearch Grant
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:1032043410320434
- 财政年份:2019
- 资助金额:$ 86.79万$ 86.79万
- 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:1052417710524177
- 财政年份:2019
- 资助金额:$ 86.79万$ 86.79万
- 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:1053158510531585
- 财政年份:2019
- 资助金额:$ 86.79万$ 86.79万
- 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
- 批准号:1006398110063981
- 财政年份:2019
- 资助金额:$ 86.79万$ 86.79万
- 项目类别: