Advancing Location Accuracy via Collimated Nuclear Assay for Decommissioning Robotic Applications (ALACANDRA)

通过用于退役机器人应用的准直核分析提高定位精度 (ALACANDRA)

基本信息

  • 批准号:
    EP/V026941/1
  • 负责人:
  • 金额:
    $ 86.79万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

Radioactivity is all around us but it is usually dispersed such that it poses little risk to human health. However, past industrial activities associated with nuclear weapons production, the manufacture of fuel for nuclear power stations and the management of radioactive waste from these activities have resulted in a significant number of highly contaminated facilities. The level of contamination can be so great that people cannot enter because the radiation level is too high. Further, because we do not understand the long-term risks associated with low-level radiation exposures, entry to place contaminated less is often discouraged to minimise any risk that there might be. Matters are complicated further because difficulty getting inside complicates our ability to understand exactly what needs to be done to make these places safe.Some of these facilities are not safe because they are old and were not designed to last this long. It is important to make them safe now to ensure radioactivity does not get out, and because the longer this takes the more difficult and expensive it becomes as new problems arise. However, this will take a long time to complete: at Sellafield, the time needed to complete this is forecast to be 120 years. This means that if they are not dealt with effectively now, these problems will fall to future generations; hence, from an ethical standpoint, the imperative is to prevent this by action now.One way to understand these radiological hazards is to send in a robot. Great advances have been made in this regard as a result of recent research, done in part by the people leading this proposal. However, simply transporting a radiation detector into a place and trying to determine where it detects the most radiation does not work for two important reasons: Firstly, radioactivity in these places is often dispersed, meaning that it is not concentrated in one place that might be dealt with easily and quickly. Instead, contamination arises from leaks, splashes, tide marks in vessels and it migrates into porous materials, yielding a 3D distribution in space. Radiation detector systems and imagers have difficulty with this because they often provide an assessment from a particular perspective that may not tell us everything we need to know. Secondly, contaminated places are often cluttered with process equipment, detritus and construction materials. These can cause the radiation to scatter and also absorb it. This influences the 'picture' and can influence how much radioactivity is thought to be present.With a human 'in the loop' - in the space with the contamination - they could improvise by moving to different vantage points, moving debris out of the way and by inferring what is involved from what they see. This not being possible, the use of a commercial robotic platform constitutes a way by which this might be replicated. For example, by assessments from a number of complementary vantage points and fusing the data obtained from this variety of perspectives. However, it is important to maintain human oversight of these operations by driving the robot rather than affording it full autonomy in case difficulties arise in recovering it etc. This raises the question: How can we interpret robot-derived information from a variety of perspectives, from a cluttered space contaminated with dispersed radioactivity, to help us understand what hazards may exist, quickly and effectively? Our research appeals directly to this requirement: we suspect that a detector's response is related to a relatively simple combination of sub-responses, as if the contamination were comprised of pixels of contamination. By advancing our interpretation of the combined influence of these on a radiation detector system configured by a robot, we hope to connect what we observe with nature of the radioactivity that is present, hence enabling robots to assist in the clean-up of these spaces more efficiently.
放射性无处不在,但它通常是分散的,因此对人类健康构成的风险很小。然而,过去与核武器生产、核电站燃料制造以及这些活动产生的放射性废物管理相关的工业活动导致了大量高度污染的设施。污染程度可能非常严重,由于辐射水平太高,人们无法进入。此外,由于我们不了解与低水平辐射暴露相关的长期风险,因此通常不鼓励进入污染较少的地方,以尽量减少可能存在的风险。事情变得更加复杂,因为进入内部的困难使我们无法准确理解需要采取哪些措施来确保这些地方的安全。其中一些设施并不安全,因为它们很旧,并且设计时无法持续这么长时间。现在重要的是确保它们的安全,以确保放射性不会泄漏,因为这需要的时间越长,随着新问题的出现,它就会变得越困难和昂贵。然而,这将需要很长时间才能完成:在塞拉菲尔德,完成这一任务预计需要 120 年。这意味着,如果现在不加以有效解决,这些问题将落到子孙后代身上;因此,从道德的角度来看,当务之急是立即采取行动来防止这种情况发生。了解这些放射性危害的一种方法是派遣机器人。最近的研究在这方面取得了巨大进展,部分是由领导该提案的人完成的。然而,简单地将辐射探测器运送到一个地方并试图确定它检测到最多辐射的位置是行不通的,原因有两个:首先,这些地方的放射性通常是分散的,这意味着它不会集中在一个可能会被检测到的地方。轻松快速地处理。相反,污染是由容器中的泄漏、飞溅、潮汐痕迹引起的,并迁移到多孔材料中,在空间中产生 3D 分布。辐射探测器系统和成像仪在这方面遇到困难,因为它们经常从特定的角度提供评估,而这可能无法告诉我们需要知道的一切。其次,受污染的地方通常堆满了工艺设备、碎屑和建筑材料。这些会导致辐射散射并吸收辐射。这会影响“图片”,并可能影响被认为存在的放射性量。当人类“在环路中”时 - 在有污染的空间中 - 他们可以通过移动到不同的有利位置,将碎片移开来即兴发挥并根据他们所看到的推断出所涉及的内容。这是不可能的,商业机器人平台的使用构成了一种可以复制这种情况的方式。例如,通过从多个互补的有利角度进行评估并融合从各种角度获得的数据。然而,重要的是通过驾驶机器人来维持人类对这些操作的监督,而不是在恢复机器人等过程中出现困难时为其提供完全的自主权。这就提出了一个问题:我们如何从不同的角度解释机器人衍生的信息,从被分散的放射性污染的杂乱空间中,帮助我们快速有效地了解可能存在哪些危险?我们的研究直接满足了这一要求:我们怀疑探测器的响应与相对简单的子响应组合有关,就好像污染是由污染像素组成的一样。通过推进我们对这些因素对机器人配置的辐射探测器系统的综合影响的解释,我们希望将我们观察到的现象与存在的放射性性质联系起来,从而使机器人能够更多地协助清理这些空间高效。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lessons learned: Symbiotic autonomous robot ecosystem for nuclear environments
  • DOI:
    10.1049/csy2.12103
  • 发表时间:
    2023-12-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mitchell,Daniel;Emor Baniqued,Paul Dominick;Jiang,Zhengyi
  • 通讯作者:
    Jiang,Zhengyi
Use of Gaussian process regression for radiation mapping of a nuclear reactor with a mobile robot.
  • DOI:
    10.1038/s41598-021-93474-4
  • 发表时间:
    2021-07-07
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    West A;Tsitsimpelis I;Licata M;Jazbec AE;Snoj L;Joyce MJ;Lennox B
  • 通讯作者:
    Lennox B
A GPS-enabled seabed sediment sampler: Recovery efficiency and efficacy.
支持 GPS 的海底沉积物采样器:回收效率和功效。
Improved localization of radioactivity with a normalized sinc transform
通过归一化 sinc 变换改进放射性定位
Localising and identifying radionuclides via energy-resolved angular photon responses
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Malcolm Joyce其他文献

Malcolm Joyce的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Malcolm Joyce', 18)}}的其他基金

Capture gamma-ray Assessment in Nuclear Energy (C-GANE)
核能中捕获伽马射线评估 (C-GANE)
  • 批准号:
    EP/X038327/1
  • 财政年份:
    2023
  • 资助金额:
    $ 86.79万
  • 项目类别:
    Research Grant
JUNO: A Network for Japan - UK Nuclear Opportunities
JUNO:日本-英国核机会网络
  • 批准号:
    EP/P013600/2
  • 财政年份:
    2023
  • 资助金额:
    $ 86.79万
  • 项目类别:
    Research Grant
Autonomous Inspection for Responsive and Sustainable Nuclear Fuel Manufacture (AIRS-NFM)
响应性和可持续核燃料制造的自主检查(AIRS-NFM)
  • 批准号:
    EP/V051059/1
  • 财政年份:
    2021
  • 资助金额:
    $ 86.79万
  • 项目类别:
    Research Grant
AMS-UK: A UK Accelerator Mass Spectrometry Facility for Nuclear Fission Research
AMS-UK:英国用于核裂变研究的加速器质谱设施
  • 批准号:
    EP/T01136X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 86.79万
  • 项目类别:
    Research Grant
JUNO: A Network for Japan - UK Nuclear Opportunities
JUNO:日本-英国核机会网络
  • 批准号:
    EP/P013600/1
  • 财政年份:
    2016
  • 资助金额:
    $ 86.79万
  • 项目类别:
    Research Grant
Digital fast neutron assay of uranium
铀的数字快中子测定
  • 批准号:
    EP/P008062/1
  • 财政年份:
    2016
  • 资助金额:
    $ 86.79万
  • 项目类别:
    Research Grant
Technology development to evaluate dose rate distribution in PCV and to search for fuel debris submerged in water
开发技术来评估 PCV 中的剂量率分布并寻找淹没在水中的燃料碎片
  • 批准号:
    EP/N017749/1
  • 财政年份:
    2015
  • 资助金额:
    $ 86.79万
  • 项目类别:
    Research Grant
Imaging and location of fast neutron emissions by real-time time-of-flight
通过实时飞行时间对快中子发射进行成像和定位
  • 批准号:
    EP/M02489X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 86.79万
  • 项目类别:
    Research Grant
A centre for Advanced Digital Radiometric Instrumentation for Applied Nuclear Activities (ADRIANA)
应用核活动先进数字辐射仪器中心 (ADRIANA)
  • 批准号:
    EP/L025671/1
  • 财政年份:
    2014
  • 资助金额:
    $ 86.79万
  • 项目类别:
    Research Grant
DISTINGUISH: Detection of explosive substances by tomographic inspection using neutron and gamma-ray spectroscopy
区别:使用中子和伽马射线光谱仪通过断层扫描检测爆炸性物质
  • 批准号:
    EP/C008022/1
  • 财政年份:
    2006
  • 资助金额:
    $ 86.79万
  • 项目类别:
    Research Grant

相似国自然基金

硅藻18S rDNA用于溺死地点推断人工智能预测模型的构建及法医学应用研究
  • 批准号:
    82371901
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
东北阜新-锦州盆地及其他地点早白垩世晚期的两栖爬行类研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    61 万元
  • 项目类别:
面向多地点动态集结任务的空海无人系统智能协同控制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于ConvNet路标语义时空关联与在线聚类的移动机器人视觉地点识别
  • 批准号:
    61903373
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
空间co-location模式挖掘中的模糊技术研究
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    40 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Advancing Location Accuracy via Collimated Nuclear Assay for Decommissioning Robotic Applications (ALACANDRA)
通过用于退役机器人应用的准直核分析提高定位精度 (ALACANDRA)
  • 批准号:
    EP/V026925/1
  • 财政年份:
    2021
  • 资助金额:
    $ 86.79万
  • 项目类别:
    Research Grant
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
  • 批准号:
    10320434
  • 财政年份:
    2019
  • 资助金额:
    $ 86.79万
  • 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
  • 批准号:
    10524177
  • 财政年份:
    2019
  • 资助金额:
    $ 86.79万
  • 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
  • 批准号:
    10531585
  • 财政年份:
    2019
  • 资助金额:
    $ 86.79万
  • 项目类别:
Advancing MRI technology for early diagnosis of liver metastases
推进 MRI 技术用于肝转移的早期诊断
  • 批准号:
    10063981
  • 财政年份:
    2019
  • 资助金额:
    $ 86.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了