SEMI-AUTOMATED METHODS OF SEGMENTATION OF BRAIN IMAGE
脑图像分割的半自动化方法
基本信息
- 批准号:3767556
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:alcoholism /alcohol abuse computed axial tomography computer assisted diagnosis computer program /software computer system design /evaluation diagnosis quality /standard glucose metabolism human subject image processing interview magnetic resonance imaging online computer positron emission tomography skull
项目摘要
In order to achieve three-dimensional co-registration of images acquired
with different technologies, corresponding landmarks must be identified in
the respective images. The scale and orientation differences associated
with image representations from different scanners present a major
obstacle in this task. Visual identification of corresponding regions
introduces subjectivity and inconsistency, and may become too laborious
for large study series. Therefore, the aim of this research is the
development of semi- or fully-automated computer methods for the
identification and delineation ("segmentation") of important areas and
landmarks (e.g. skull, gray and white brain matter,CSF, pathologic
tissues) in brain images derived from different modalities. A
fully-automated ("unsupervised") procedure to segment CT images into
regions of bone, brain parenchyma, and CSF has been implemented.
Calibration of this procedure with a CT image of an anthropomorphic
phantom demonstrated unbiased segmentation. Its application for the
segmentation of CSF spaces in alcoholic and normal subjects yielded
results consistent with a subjective segmentation. For the purpose of
enabling the registration of images that represent local glucose
utilization (PET) with structural images (MRI or CT), algorithms for the
detection of anatomic landmarks in PET slices were developed. Reliable
automated detection of the outlines of the skull and the midlines in each
slice was achieved, demonstrating suitability of these landmarks for
registration.
为了实现获得图像的三维共同注册
使用不同的技术,必须在
各自的图像。 相关的规模和方向差异
带有来自不同扫描仪的图像表示形式
这项任务的障碍。 相应区域的视觉识别
引入主观性和不一致,可能变得太艰辛
大型学习系列。 因此,这项研究的目的是
开发半自动化的计算机方法
重要领域的识别和描述(“分割”)
地标(例如头骨,灰色和白色脑物质,CSF,病理学
组织)在源自不同方式的大脑图像中。 一个
完全自动化(“无监督”的)程序,以将CT图像分割为
已经实施了骨骼,脑实质和CSF的区域。
使用拟人化的CT图像对此过程进行校准
幻影表现出无偏分段。 它的应用
酒精和正常受试者中CSF空间的分割
结果与主观分割一致。 目的
启用代表局部葡萄糖的图像的注册
具有结构图像(MRI或CT)的利用率(PET),算法
开发了宠物切片中解剖地标的检测。 可靠的
自动检测颅骨和中线的轮廓
实现了切片,证明了这些地标的适用性
登记。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
U RUTTIMANN其他文献
U RUTTIMANN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('U RUTTIMANN', 18)}}的其他基金
相似海外基金
Computerized Lesion Detection in Breast Tomosynthesis
乳腺断层合成中的计算机化病变检测
- 批准号:
7290123 - 财政年份:2006
- 资助金额:
-- - 项目类别:
Cardiac MDCT for Early Triage of Patients with ACS
心脏 MDCT 用于 ACS 患者早期分诊
- 批准号:
7034150 - 财政年份:2006
- 资助金额:
-- - 项目类别: