Enhanced Multiscale Boiling Surfaces (EMBOSS): From Fundamentals to Design

增强型多尺度沸腾表面 (EMBOSS):从基础知识到设计

基本信息

  • 批准号:
    EP/S019502/1
  • 负责人:
  • 金额:
    $ 72.58万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2019
  • 资助国家:
    英国
  • 起止时间:
    2019 至 无数据
  • 项目状态:
    已结题

项目摘要

Boiling phenomena are central to heating and cooling duties in many industries, such as cooling and refrigeration, power generation, and chemical manufacture. Limitations to boiling heat transfer arise through surface dry-out at high heat flux, leading to localised hot-spots on heat transfer surfaces and larger equipment requirements. Whilst this is a significant problem for many industries, it becomes even more of an issue when dealing with small-scale systems, such as those used for cooling of microelectronics, where failure to remove heat effectively leads to localised overheating and potential damage of components. Spatially non-uniform and unsteady dissipative heat generation in such systems is detrimental to their performance and longevity. The effective heat exchanger area is of order sq. cm, with heat fluxes of order MW/sqm. This requires a transformative, step-change, beyond the current state-of-the-art for cooling heat fluxes between 2-15 MW/sqm at local "hot spots" to prevent burn out.A number of attempts have already been made to extend the upper boundary for the heat flux through alteration of surface characteristics with the aim of improved nucleation of vapour bubbles, bubble detachment, and subsequent rewetting of the surface by liquid. Despite the progress made, previous work on surfaces for pool- (and potentially flow-) boiling does not involve a rational approach for developing optimal surface topography. For instance, nucleate boiling heat transfer (NBHT) decreases with increasing wettability, and the designer must consider the nucleation site density, associated bubble departure diameter, and frequency related to the surface structure and fluid phase behaviour. For high surface wettability, the smaller-scale surface structure characteristics (e.g. cavities) can act as nucleation sites; for low wettability, the cavity dimensions, rather than its topology, will dominate. Therefore, characterising surfaces in terms of roughness values is insufficient to account for the changes in the boiling curve: the fluid-surface coupling must be studied in detail for the enhancement of NBHT and the critical heat flux.EMBOSS brings together a multi-disciplinary team of researchers from Brunel, Edinburgh, and Imperial, and six industrial partners and a collaborator (Aavid Thermacore, TMD ltd, Oxford Nanosystems, Intrinsiq Materials, Alfa Laval, CALGAVIN, and OxfordLasers) with expertise in cutting-edge micro-fabrication, experimental techniques, and molecular-, meso- and continuum-scale modelling and simulation. The EMBOSS framework will inform the rational design, fabrication, and optimisation of operational prototypes of a pool-boiling thermal management system. Design optimality will be measured in terms of materials and energy savings, heat-exchange equipment efficiency and footprint, reduction of emissions, and process sustainability. The collaboration with our partners will ensure alignment with the industrial needs, and will accelerate technology transfer to industry. These partners will provide guidance and advice through the project progress meetings, which some of them will also host. In addition, Alfa Laval will provide brazed heat exchangers as condensers for the experimental work, Intrinsiq will provide copper ink for coating surfaces and Oxford nanoSystems will provide nano-structured surface coatings. The project will integrate the challenges identified by EPSRC Prosperity Outcomes and the Industrial Strategy Challenge Fund in Energy (Resilient Nation), manufacturing and digital technologies (Resilient Nation, Productive Nation), as areas to drive economic growth.
沸腾现象对于许多行业的加热和冷却任务至关重要,例如冷却和制冷、发电和化学制造。高热通量下的表面干燥会导致沸腾传热受到限制,导致传热表面出现局部热点,并且需要更大的设备。虽然这对许多行业来说都是一个重大问题,但在处理小型系统(例如用于微电子冷却的系统)时,它变得更加严重,在这些系统中,无法有效散热会导致局部过热和组件的潜在损坏。此类系统中空间不均匀且不稳定的耗散热量对其性能和寿命不利。有效热交换器面积为平方厘米量级,热通量为兆瓦/平方米量级。这需要进行变革性的、逐步的改变,超越当前在局部“热点”冷却 2-15 MW/平方米之间的最先进技术,以防止烧坏。通过改变表面特性来扩展热通量的上边界,目的是改善蒸汽泡的成核、气泡脱离以及随后液体对表面的再润湿。尽管取得了进展,但之前关于池(和潜在的流动)沸腾表面的工作并未涉及开发最佳表面形貌的合理方法。例如,泡核沸腾传热 (NBHT) 随着润湿性的增加而降低,设计者必须考虑成核位点密度、相关的气泡离开直径以及与表面结构和流体相行为相关的频率。对于高表面润湿性,较小尺度的表面结构特征(例如空腔)可以充当成核位点;对于低润湿性,空腔尺寸而不是其拓扑结构将占主导地位。因此,用粗糙度值表征表面不足以解释沸腾曲线的变化:必须详细研究流体-表面耦合,以增强 NBHT 和临界热通量。EMBOSS 汇集了多学科团队来自布鲁内尔、爱丁堡和帝国理工学院的研究人员以及六个工业合作伙伴和一个合作者(Aavid Thermacore、TMD ltd、Oxford Nanosystems、Intrinsiq Materials、Alfa Laval、CALGAVIN 和OxfordLasers)拥有尖端微制造、实验技术以及分子、介观和连续尺度建模和模拟方面的专业知识。 EMBOSS 框架将为池沸腾热管理系统的操作原型的合理设计、制造和优化提供信息。设计优化将根据材料和能源节省、热交换设备效率和占地面积、排放减少以及工艺可持续性来衡量。与我们的合作伙伴的合作将确保符合行业需求,并将加速技术向行业的转移。这些合作伙伴将通过项目进展会议提供指导和建议,其中一些合作伙伴还将主持会议。此外,阿法拉伐将为实验工作提供钎焊热交换器作为冷凝器,Intrinsiq 将提供用于涂层表面的铜墨水,Oxford nanoSystems 将提供纳米结构表面涂层。该项目将整合 EPSRC 繁荣成果和工业战略挑战基金在能源(弹性国家)、制造和数字技术(弹性国家、生产力国家)领域确定的挑战,作为推动经济增长的领域。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Bubble growth on a smooth metallic surface at atmospheric and sub-atmospheric pressure
大气压和负压下光滑金属表面上的气泡生长
Saturated Nucleate Boiling with HFE-7100 on a Plain Smooth Copper Surface
在光滑的铜表面上使用 HFE-7100 进行饱和核沸腾
  • DOI:
    http://dx.10.11159/icmfht20.123
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fan X
  • 通讯作者:
    Fan X
Pool boiling review: Part I - Fundamentals of boiling and relation to surface design
池沸腾回顾:第一部分 - 沸腾的基础知识以及与表面设计的关系
Diffuse Interface Method for Nucleate Boiling Simulations
用于核沸腾模拟的扩散界面方法
  • DOI:
    http://dx.10.11159/icmfht22.159
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Minozzi G
  • 通讯作者:
    Minozzi G
Bubble growth models in saturated pool boiling of water on a smooth metallic surface: Assessment and a new recommendation
光滑金属表面饱和水池沸腾中的气泡生长模型:评估和新建议
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tassos Karayiannis其他文献

Tassos Karayiannis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tassos Karayiannis', 18)}}的其他基金

Spray cooling high power dissipation applications (SANGRIA): From Fundamentals to Design
喷雾冷却高功耗应用 (SANGRIA):从基础知识到设计
  • 批准号:
    EP/X015335/1
  • 财政年份:
    2024
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Research Grant
Boiling Flows in Small and Microchannels (BONSAI): From Fundamentals to Design
小通道和微通道中的沸腾流 (BONSAI):从基础知识到设计
  • 批准号:
    EP/T033045/1
  • 财政年份:
    2021
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Research Grant
Flow Boiling and Condensation of Mixtures in Microscale
微尺度混合物的流动沸腾和冷凝
  • 批准号:
    EP/N011112/1
  • 财政年份:
    2016
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Research Grant
Boiling in Microchannels: integrated design of closed-loop cooling system for devices operating at high heat fluxes
微通道沸腾:高热通量设备闭环冷却系统集成设计
  • 批准号:
    EP/K011502/1
  • 财政年份:
    2013
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Research Grant
Boiling and Condensation in Microchannels
微通道中的沸腾和冷凝
  • 批准号:
    EP/D500095/1
  • 财政年份:
    2006
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Research Grant

相似国自然基金

有机工质管内相分布调控强化沸腾传热机理研究
  • 批准号:
    51906231
  • 批准年份:
    2019
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
用于沸腾传热关键过程协同优化的仿生超浸润多尺度界面研究
  • 批准号:
    21902006
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
微纳复合结构高效毛细吸液机制及其对沸腾换热的强化机理研究
  • 批准号:
    51906191
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
朝下多尺度结构表面的临界沸腾换热研究
  • 批准号:
    51706068
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
梯度金属泡沫内流动沸腾传热机理研究
  • 批准号:
    51576126
  • 批准年份:
    2015
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

CDS&E: Multiscale Data Intensive Simulation and Modeling of Microemulsion Boiling: A New Paradigm for Boiling Enhancement
CDS
  • 批准号:
    2347627
  • 财政年份:
    2024
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Standard Grant
Enhanced Multiscale Boiling Surfaces (EMBOSS): From Fundamentals to Design
增强型多尺度沸腾表面 (EMBOSS):从基础知识到设计
  • 批准号:
    EP/S019545/1
  • 财政年份:
    2019
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Research Grant
Enhanced Multiscale Boiling Surfaces (EMBOSS): From Fundamentals to Design
增强型多尺度沸腾表面 (EMBOSS):从基础知识到设计
  • 批准号:
    EP/S019588/1
  • 财政年份:
    2019
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Research Grant
Research Initiation Award - Experimental and Multiscale Simulation Study of Nanoscale Thermal Transport and Evaporation/Boiling Heat Transfer using Self-assembled Nanoemulsions
研究启动奖 - 使用自组装纳米乳液进行纳米级热传输和蒸发/沸腾传热的实验和多尺度模拟研究
  • 批准号:
    1601156
  • 财政年份:
    2016
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Standard Grant
EAGER: Innovative 3-D, multiscale flow-boiling wick
EAGER:创新的 3-D、多尺度流动沸腾芯
  • 批准号:
    1623572
  • 财政年份:
    2016
  • 资助金额:
    $ 72.58万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了