Scalable Room Acoustic Modelling (SCReAM)

可扩展的房间声学建模 (SCReAM)

基本信息

  • 批准号:
    EP/V002554/1
  • 负责人:
  • 金额:
    $ 51.9万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

We spend the majority of our lives indoors. Within enclosed spaces, sound is reflected numerous times, leading to reverberation. We are accustomed to perceiving reverberation-we unconsciously use it to navigate the space, and, when absent, we notice. Similarly, our electronic devices, such as laptops, TVs or smart home devices, are exposed to reverberation and need to take into account its presence. Being able to predict, synthesise, and control reverberation is therefore important. This is done using room acoustic models. Existing room acoustic models suffer from two main limitations. First, they were originally developed from very different starting points and for very different purposes, which has led to a highly fragmented research field where advancements in one area do not translate to advancements in other areas, slowing down research. Second, each model has a specific accuracy and a specific computational complexity, with some very accurate models taking several days to run (physical models), while others run in real-time but with low accuracy and only aim to create a pleasing reverberant sound (perceptual models). Thus, there is no single model that allows to scale continuously from one extreme to the other. This project will overcome both limitations by defining a novel, unifying room acoustic model that combines appealing properties of all main types of models and that can scale on demand from a lightweight perceptual model to a full-scale physical model. Such a SCalable Room Acoustic Model (SCReAM) will bring benefits in many applications, ranging from consumer electronics and communications, to computer games, immersive media, and architectural acoustics. The model will be able to adapt in real time, enabling end-users to get the best possible auditory experience allowed by the available computing resources. Audio software developers will not need to update their development chains once more powerful machines become available, thus reducing costs. Electronic equipment, such as hands-free devices, smart loudspeakers, and sound reinforcement systems, will be able to build a more flexible internal representation of room acoustics, allowing them to reduce unwanted echoes, to remove acoustic feedback, and/or to improve the tonal balance of reproduced sound.The main hypothesis of the project is that a connection exists between physical models and perceptual models based on so-called delay networks, and that this connection can be leveraged to develop the sought-after unifying and scalable model.The research will be conducted at the University of Surrey with industrial support by Sonos (audio consumer electronics), Electronic Arts (computer games), Audio Software Development Limited (computer games audio consultancy), and Adrian James Acoustics (acoustics consultancy).
我们在室内度过大部分一生。在封闭的空间内,声音反映了无数次,导致混响。我们习惯于感知混响,我们不知不觉地使用它来浏览空间,并且在缺席时,我们会注意到。同样,我们的电子设备(例如笔记本电脑,电视或智能家居设备)也会暴露于混响,需要考虑到它的存在。因此,能够预测,综合和控制混响很重要。这是使用房间声学模型完成的。现有的房间声学模型遭受了两个主要局限性。首先,它们最初是从非常不同的起点和截然不同的目的开发的,这导致了一个高度分散的研究领域,在该领域中,一个领域的进步不会转化为其他领域的进步,从而减慢了研究。其次,每个模型都具有特定的精度和特定的计算复杂性,其中一些非常精确的模型需要几天的时间(物理模型),而其他模型则是实时运行的,但精度较低,只能创建令人愉悦的回响声音(感知模型)。因此,没有单个模型可以从一个极端到另一个极端连续扩展。该项目将通过定义一个新颖,统一的房间声学模型来克服这两种局限性,该模型结合了所有主要模型的吸引力属性,并且可以从轻巧的感知模型到全面的物理模型扩展。这种可扩展的房间声学模型(Scream)将在许多应用中带来好处,从消费电子和通信到计算机游戏,沉浸式媒体和建筑声学。该模型将能够实时适应,使最终用户能够获得可用的计算资源允许的最佳听觉体验。音频软件开发人员将不需要更新其开发链,又可以更强大的机器可用,从而降低成本。电子设备,例如免提设备,智能扬声器和声音增强系统,将能够建立更灵活的房间声学的内部表示,使它们能够减少不需要的回声,以消除声音反馈,并消除型号的范围,以延迟型号的范围。该研究将在萨里大学(Sonos)(音频消费电子产品),电子艺术(计算机游戏),音频软件开发有限公司(计算机游戏音频咨询)和Adrian James Acoustics(Acoustics Accoustics(Acoustics Assustance)进行工业支持,以开发出抢手的统一和可扩展模型。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
User Expectation of Room Acoustic Parameters in Virtual Reality Environments
用户对虚拟现实环境中房间声学参数的期望
  • DOI:
    10.1109/i3da57090.2023.10289314
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Burnett B
  • 通讯作者:
    Burnett B
Perceptual evaluation of low-complexity diffraction models from a single edge
从单边缘对低复杂度衍射模型进行感知评估
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mannall J
  • 通讯作者:
    Mannall J
HIGHER-ORDER SCATTERING DELAY NETWORKS FOR ARTIFICIAL REVERBERATION
用于人工混响的高阶散射延迟网络
Efficient Diffraction Modeling Using Neural Networks and Infinite Impulse Response Filters
使用神经网络和无限脉冲响应滤波器进行高效衍射建模
Grouped Feedback Delay Networks With Frequency-Dependent Coupling
具有频率相关耦合的分组反馈延迟网络
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Enzo De Sena其他文献

Paraunitary approximation of matrices of analytic functions - the polynomial procrustes problem
解析函数矩阵的拟酉逼近 - 多项式普鲁斯特斯问题
  • DOI:
    10.1016/j.sctalk.2024.100318
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Stephan Weiss;Sebastian J. Schlecht;Orchisama Das;Enzo De Sena
  • 通讯作者:
    Enzo De Sena
Joint Acoustic Localization and Dereverberation Through Plane Wave Decomposition and Sparse Regularization
通过平面波分解和稀疏正则化进行联合声学定位和去混响

Enzo De Sena的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Enzo De Sena', 18)}}的其他基金

Challenges in Immersive Audio Technology
沉浸式音频技术的挑战
  • 批准号:
    EP/X032914/1
  • 财政年份:
    2024
  • 资助金额:
    $ 51.9万
  • 项目类别:
    Research Grant

相似国自然基金

基于自然能的被动再生干燥床与双层调湿结构墙体房间耦合的湿调节机制研究
  • 批准号:
    52378099
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
语言声房间和厅堂的语音传输指数(STI)评价阈值研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
语言声房间和厅堂的语音传输指数(STI)评价阈值研究
  • 批准号:
    52278092
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目
夏热冬暖地区住宅高反射涂料平屋顶房间热环境调控机理研究
  • 批准号:
    51878088
  • 批准年份:
    2018
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目
基于分流扬声器阵列的低频声控制
  • 批准号:
    11874218
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目

相似海外基金

Construction of practical boundary modeling for wave acoustic simulation in a room
室内波浪声学模拟实用边界模型的构建
  • 批准号:
    23K04144
  • 财政年份:
    2023
  • 资助金额:
    $ 51.9万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Detection of human posture/state in a small room through acoustic frequency characteristics
通过声频特性检测小房间内人体姿势/状态
  • 批准号:
    22K19893
  • 财政年份:
    2022
  • 资助金额:
    $ 51.9万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Hear What I Want: an Acoustically Smart Personalized Common Room
听到我想要的:声学智能的个性化公共休息室
  • 批准号:
    10484661
  • 财政年份:
    2022
  • 资助金额:
    $ 51.9万
  • 项目类别:
The importance of room shape for the acoustic performance of classrooms and meeting spaces
房间形状对于教室和会议空间声学性能的重要性
  • 批准号:
    562521-2021
  • 财政年份:
    2021
  • 资助金额:
    $ 51.9万
  • 项目类别:
    University Undergraduate Student Research Awards
Nanoparticle-based optical magnetometer for room-temperature magnetoencephalography
用于室温脑磁图的纳米颗粒光学磁力计
  • 批准号:
    10449972
  • 财政年份:
    2021
  • 资助金额:
    $ 51.9万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了