Coherent pulse propagation and modelocking in terahertz quantum cascade lasers

太赫兹量子级联激光器中的相干脉冲传播和锁模

基本信息

  • 批准号:
    EP/T034246/1
  • 负责人:
  • 金额:
    $ 143.65万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The generation of ultrafast and intense light pulses is an underpinning technology across the electromagnetic spectrum enabling time-resolved measurements, nonlinear photonics, coherent control of matter, and frequency comb synthesis for high-precision metrology and spectroscopy. Yet in the terahertz (THz) region of the electromagnetic spectrum (~0.5-5THz), which spans the frequency range between microwaves and the mid-infrared, a compact semiconductor-based technology platform for intense and ultrafast pulse generation has yet to be realised. Established pulse generation schemes, based on excitation of photoconductive emitters or nonlinear crystals using bulky and expensive near-infrared lasers systems, offer only low frequency modulation, or broadband emission with little control of the spectral bandwidth and pulse width. These limitations are significantly hindering the development of the THz field not only in the UK but internationally, with adverse consequences for both fundamental scientific research and the development of future applications in metrology, materials analysis and molecular spectroscopy, and ultra-high speed THz communications.One promising solution to closing this technological gap is the THz frequency quantum cascade laser (QCL) - a compact and high-power semiconductor laser based on a quantum-engineered semiconductor superlattice. However, modelocking these sources is inherently difficult to achieve due to the very fast gain recovery time in these structures. Indeed, active modelocking approaches adopted to date have succeeded only in achieving pulse widths down to ~4ps, and only low output powers are possible.In this programme we will explore a radically new approach to pulse generation in lasers, based on the phenomenon of self-induced transparency in which pulses of the correct energy and pulse duration propagate without loss in the laser cavity whilst the growth of continuous waves is supressed. Although this concept has been discussed since the 1960s, the observation of this effect in semiconductor devices has remained elusive owing to the typically short coherence times of inter-band laser transitions. QCLs, however, are the ideal tool to realize SIT-modelocking owing to their large dipole moments, relatively long inter-subband coherence times, and, importantly, the possibility of combining resonant gain and absorbing periods with engineered dipole moments.We will explore the coherent interaction of intense, ultrafast THz pulses with intersubband semiconductor heterostructures and THz QCL devices for the first time. Although these measurements are of fundamental interest in their own right, the investigation of such systems will lead to the development of the first modelocked semiconductor laser exploiting self-induced transparency. Through this approach, we will bring about a step change in QCL modelocked technology and develop THz QCLs into a foundational, compact semiconductor technology for generating intense and ultrafast THz pulses, with inherent advantages of high powers, broad spectral coverage and the ability to electrically-control the emission properties. This will pave the way for the application of modelocked THz QCLs across a wide range of areas of academic and industrial relevance, including non-linear THz science, quantum optics, ultra-high-speed THz communications, and high-precision metrology and molecular spectroscopy. But that is not all. We will also demonstrate proof-of-principle applications of these new QCL sources for molecular spectroscopy, leading to a compact, all-solid-state and electrically-controlled multi-heterodyne THz spectrometer offering >500 GHz spectral coverage and sub-millisecond acquisition times. Through this goal we will translate to the THz region the unequalled combination of broad spectral coverage, high detection sensitivity, narrow spectral resolution and fast acquisition enabled by laser frequency combs at mid- and near-infrared frequencies.
超快和强光脉冲的产生是跨电磁频谱的基础技术,可实现时间分辨测量,非线性光子学,物质的相干控制以及用于高精确度量和光谱的频率梳子合成。然而,在电磁光谱的Terahertz(THz)区域(〜0.5-5THz),该区域跨越微波和中红外之间的频率范围,尚未实现基于紧凑的半导体技术平台的紧凑半导体技术平台。建立的脉冲产生方案基于使用笨重且昂贵的近红外激光系统对光电传射器或非线性晶体的激发,仅提供低频调制或宽带发射,几乎无法控制光谱带宽和脉冲宽度。这些限制极大地阻碍了THZ领域的发展,不仅在英国而且在国际上,对基本科学研究以及未来在计量学,材料分析和分子光谱的发展以及超高速度THZ通信的发展产生了不利的后果。基于量子工程的半导体超晶格。但是,由于这些结构中的恢复时间非常快,对这些来源进行模型本质上很难实现。 Indeed, active modelocking approaches adopted to date have succeeded only in achieving pulse widths down to ~4ps, and only low output powers are possible.In this programme we will explore a radically new approach to pulse generation in lasers, based on the phenomenon of self-induced transparency in which pulses of the correct energy and pulse duration propagate without loss in the laser cavity whilst the growth of continuous waves is supressed.尽管自1960年代以来就已经讨论过这个概念,但由于典型的频段间激光跃迁的相干时间很短,因此在半导体设备中观察到这种效果仍然难以捉摸。但是,QCL是由于其较大的偶极矩,相对较长的较长的寄生带相干时间,以及重要的是,将谐振增益和吸收时期与工程偶极时矩相结合的可能性。 时间。尽管这些测量值本身具有基本兴趣,但对这种系统的调查将导致开发第一个模型的半导体激光器,从而利用自我诱导的透明度。通过这种方法,我们将使QCL模型岩石技术的逐步变化,并将THZ QCLS开发为基础,紧凑的半导体技术,以产生强烈和超快的THZ脉冲,具有高功率,广泛的光谱覆盖范围的固有优势,并具有电力控制发射特性的能力。这将为在多个学术和工业相关性领域中应用模型的THZ QCL铺平道路,包括非线性THZ科学,量子光学,超高速度THZ通信以及高精度计量学和分子光谱学。但这不是全部。我们还将展示这些新QCL源用于分子光谱法的原则证明,从而导致紧凑,全固定状态和电控制的多脱螺旋thz光谱仪> 500 GHz光谱覆盖范围> 500 GHz光谱覆盖范围和亚毫米次获得时间。通过这个目标,我们将转化为THZ区域,即广泛的光谱覆盖率,高检测灵敏度,狭窄的光谱分辨率和快速采集的组合,并由激光频率梳子在中和近红外频率下实现。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sub-surface damage detection in marble structures using THz time domain and laser feedback interferometric imaging techniques
使用太赫兹时域和激光反馈干涉成像技术检测大理石结构的次表面损伤
  • DOI:
    10.1117/12.2592548
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bandyopadhyay A
  • 通讯作者:
    Bandyopadhyay A
Terahertz imaging with self-pulsations in quantum cascade lasers under optical feedback
  • DOI:
    10.1063/5.0056487
  • 发表时间:
    2021-09-01
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Qi, Xiaoqiong;Bertling, Karl;Rakic, Aleksandar D. D.
  • 通讯作者:
    Rakic, Aleksandar D. D.
Observation of optical feedback dynamics in single-mode terahertz quantum cascade lasers: Transient instabilities
  • DOI:
    10.1103/physreva.103.033504
  • 发表时间:
    2021-03-08
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Qi, Xiaoqiong;Bertling, Karl;Rakic, Aleksandar D.
  • 通讯作者:
    Rakic, Aleksandar D.
Terahertz imaging of human skin pathologies using laser feedback interferometry with quantum cascade lasers.
  • DOI:
    10.1364/boe.480615
  • 发表时间:
    2023-04-01
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Qi, Xiaoqiong;Bertling, Karl;Stark, Mitchell S.;Taimre, Thomas;Kao, Yung-Ching;Lim, Yah Leng;Han, She;O'Brien, Blake;Collins, Angus;Walsh, Michael;Torniainen, Jari;Gillespie, Timothy;Donose, Bogdan C.;Dean, Paul;Li, Lian He;Linfield, Edmund H.;Davies, A. Giles;Indjin, Dragan;Soyer, H. Peter;Rakic, Aleksandar D.
  • 通讯作者:
    Rakic, Aleksandar D.
Prospects of temperature performance enhancement through higher resonant phonon transition designs in GaAs-based terahertz quantum-cascade lasers
通过砷化镓基太赫兹量子级联激光器中更高谐振声子跃迁设计提高温度性能的前景
  • DOI:
    10.1088/1367-2630/ac5b41
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Demic A
  • 通讯作者:
    Demic A
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Dean其他文献

Descending projections from the superior colliculus in rat: a study using orthograde transport of wheatgerm-agglutinin conjugated horseradish peroxidase
大鼠上丘的下降预测:使用麦芽凝集素缀合辣根过氧化物酶的顺行运输的研究
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Peter Redgrave;I. Mitchell;Paul Dean
  • 通讯作者:
    Paul Dean
The projection from superior colliculus to cuneiform area in the rat
大鼠上丘至楔状区的投影
  • DOI:
    10.1007/bf00250606
  • 发表时间:
    1988
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Peter Redgrave;Paul Dean;I. Mitchell;A. Odekunle;A. Clark
  • 通讯作者:
    A. Clark
Tectal cells of origin of predorsal bundle in rat: location and segregation from ipsilateral descending pathway
大鼠前背束起源的顶盖细胞:位置和与同侧下行通路的分离
  • DOI:
  • 发表时间:
    2004
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Peter Redgrave;A. Odekunle;Paul Dean
  • 通讯作者:
    Paul Dean
Behavioural consequences of manipulating GABA neurotransmission in the superior colliculus.
操纵上丘 GABA 神经传递的行为后果。
  • DOI:
    10.1016/s0079-6123(08)63618-3
  • 发表时间:
    1992
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Dean;Peter Redgrave
  • 通讯作者:
    Peter Redgrave
Quantum transmission line modelling and experimental investigation of the output characteristics of a terahertz quantum cascade laser
太赫兹量子级联激光器输出特性的量子传输线建模和实验研究

Paul Dean的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Dean', 18)}}的其他基金

High-speed Terahertz Imaging using Rydberg Atoms & Quantum Cascade Lasers
使用里德堡原子进行高速太赫兹成像
  • 批准号:
    EP/W03252X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 143.65万
  • 项目类别:
    Research Grant
Ti:Sapphire Regenerative Amplified Laser System for ultrafast, high-field terahertz photonics
用于超快、高场太赫兹光子学的钛蓝宝石再生放大激光系统
  • 批准号:
    EP/P001394/1
  • 财政年份:
    2016
  • 资助金额:
    $ 143.65万
  • 项目类别:
    Research Grant
Coherent detection and manipulation of terahertz quantum cascade lasers
太赫兹量子级联激光器的相干探测和操纵
  • 批准号:
    EP/J002356/1
  • 财政年份:
    2011
  • 资助金额:
    $ 143.65万
  • 项目类别:
    Fellowship

相似国自然基金

基于脉冲神经网络的癫痫脑电时空传播机制研究
  • 批准号:
    62311530103
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    国际(地区)合作与交流项目
高精度脉冲星测时阵中毫秒脉冲星磁层不稳定性和星际传播效应的观测与研究
  • 批准号:
    12303053
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
深度脉冲神经网络的混沌反向传播通用算法
  • 批准号:
    T2350003
  • 批准年份:
    2023
  • 资助金额:
    300 万元
  • 项目类别:
    专项基金项目
人体脉冲呼出气流与飞沫的近距离传播特性与涡环演化规律研究
  • 批准号:
    52378105
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
考虑压力脉冲耦合效应的夹层管动态压溃传播机理与控制
  • 批准号:
    52171288
  • 批准年份:
    2021
  • 资助金额:
    58 万元
  • 项目类别:
    面上项目

相似海外基金

Development of motion picture recording and measurement technique of femtosecond light pulse propagation with ultrahigh-temporal resolution and long recordable time and its application
超高时间分辨率、长记录时间的飞秒光脉冲传播运动图像记录与测量技术开发及应用
  • 批准号:
    23H01422
  • 财政年份:
    2023
  • 资助金额:
    $ 143.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Improvement of the pulse-detonation technology by shortening of the run-up distance and speeding up of the propagation
通过缩短助跑距离和加速传播来改进脉冲爆震技术
  • 批准号:
    20H02352
  • 财政年份:
    2020
  • 资助金额:
    $ 143.65万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Spatiotemporal Dynamics of Multimode Optical Pulse Propagation: Route to High-Performance Ultrafast Lasers
多模光脉冲传播的时空动力学:高性能超快激光器之路
  • 批准号:
    1912742
  • 财政年份:
    2019
  • 资助金额:
    $ 143.65万
  • 项目类别:
    Standard Grant
Single-cell causality in origination, propagation, and resolution of drug-altered brain states
药物改变大脑状态的起源、传播和解决的单细胞因果关系
  • 批准号:
    10494005
  • 财政年份:
    2017
  • 资助金额:
    $ 143.65万
  • 项目类别:
Ultrashort laser pulse propagation in materials with strong-coupling carriers
超短激光脉冲在强耦合载流子材料中的传播
  • 批准号:
    388268385
  • 财政年份:
    2017
  • 资助金额:
    $ 143.65万
  • 项目类别:
    Research Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了