Modelling surface effects in two-phase fluid processes across scales

跨尺度的两相流体过程中的表面效应建模

基本信息

  • 批准号:
    EP/T027061/2
  • 负责人:
  • 金额:
    $ 26.46万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    已结题

项目摘要

My fellowship aims to develop expertise in the area of boiling and nuclear thermal hydraulics research via the development of novel analytical and computational techniques, the generation of new experimental data and their application to model the behaviour of boiling fluids in industrial systems.The behaviour of fluids, such as water, used in industrial processes and power generation, is to a large extent governed by the interaction of bubbles and droplets with solid surfaces. These are found in heat exchangers, boilers and condensers and are integral part of the operation of nuclear reactors, which relies on the boiling of water at solid surfaces. Altering the physical and chemical properties of industrial surfaces enables controlling heat and mass transfer in fluid processes such as boiling flows, greatly increasing their potential as coolants. Surface modification could then be used to develop bespoke surfaces to enhance heat transfer in the core and in cooling systems of nuclear reactors. Development of such a technology requires a sound physical understanding of surface effects in fluids through theoretical analysis and numerical modelling. During my fellowship I will develop fundamental modelling techniques to study the surface-dependent behaviour of fluid processes found in nuclear thermal hydraulics applications. The radically new methodologies required to enable this technological inventive step will be developed via collaboration with world leading experts and state-of-the-art facilities found within the Thermofluids, Tribology and Nuclear Engineering Groups of the Mechanical Engineering Department at Imperial College London, enriching the development of computational models of fluid processes with insight from new experiments and simulation at the molecular scale. Collaboration with project partners Rolls-Royce and Hexxcell will ensure direct industrial application of methods and capabilities generated during my fellowship (see the accompanying Project Partner Statements of Support).In-depth knowledge of the influence of surface effects on nuclear reactor thermal hydraulics is crucial to the operation of the current fleet of water-cooled reactors and is required for the design and safety certification of new' Generation III+' plants planned to be constructed in the UK, as well as for the assessment of future reactor concepts. Some of these, such as the Advanced Modular Reactor, are at the core of scoping studies by the government. The knowledge and capabilities generated by this fellowship will provide the civil service, such as the Department of Energy & Climate Change (DECC), now part of the Department for Business, Energy & Industrial Strategy (BEIS), with a solid scientific foundation for the UK civil nuclear energy policy.Outside of the nuclear sector, stakeholders will benefit from industrial exploitation of the new, more capable modelling techniques proposed in the course of my fellowship. The work will have wide application to the design of industrial processes that use, for example, boilers, condensers, heat pipes and cooling systems. These are increasingly relying on the use of Computational Fluid Dynamics simulation (CFD) for their design. Developers of CFD software will benefit from the newly developed physical modelling capabilities delivered by my fellowship and will be able to implement the new simulation approaches into their commercial software packages.
我的奖学金旨在通过开发新颖的分析和计算技术,新的实验数据的产生及其在工业系统中建模沸腾流体的行为来建立沸腾和核热液压研究领域的专业知识。在工业过程和电力生产中使用的流体行为,在工业过程中使用的流体行为,在工业过程中使用,在互动中均可予以抛弃。这些在热交换器,锅炉和冷凝器中发现,是核反应堆运行的组成部分,核反应堆依赖于固体表面上的水的沸腾。改变工业表面的物理和化学特性,可以控制流体过程中的热量和传质,例如沸腾流,从而大大提高了它们作为冷却剂的潜力。然后可以使用表面修饰来开发定制表面,以增强核反应堆的核心和冷却系统中的传热。这种技术的开发需要通过理论分析和数值建模对流体中的表面影响有着明智的物理理解。在我的团契期间,我将开发基本的建模技术,以研究核热液压应用中发现的流体过程的表面依赖性行为。启用这一技术创造力所需的根本新方法将通过与伦敦帝国学院机械工程系的热流动类,摩擦学和核工程小组中的世界领先专家和最先进的设施进行开发,从而丰富了从新实验和模拟量表上的洞察力的计算模型的开发。与项目合作伙伴劳斯莱斯(Rolls-Royce)和十六进制的合作将确保我的团契期间产生的方法和能力的直接应用应用(请参阅随附的项目合作伙伴支持声明)。深入了解表面影响对核反应堆热液压的影响至关重要,这对于对机动反应器和安全性的构建效率的运作至关重要英国以及对未来反应堆概念的评估。其中一些,例如高级模块化反应堆,是政府范围研究的核心。该奖学金所产生的知识和能力将提供公务员,例如能源与气候变化部(DECC),现在是商业,能源与工业战略部(BEIS)的一部分,并为英国民用核能政策提供了可靠的科学基础。这项工作将广泛地应用于使用,例如锅炉,冷凝器,热管和冷却系统的工业过程。这些越来越多地依赖于使用计算流体动力学模拟(CFD)进行设计。 CFD软件的开发人员将受益于我的奖学金提供的新开发的物理建模功能,并能够将新的仿真方法实施到其商业软件包中。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hydrodynamic analysis of liquid microlayer formation in nucleate boiling of water
Modelling of free bubble growth with Interface Capturing Computational Fluid Dynamics
Thin Film Evaporation Modeling of the Liquid Microlayer Region in a Dewetting Water Bubble
  • DOI:
    10.3390/fluids8040126
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    1.9
  • 作者:
    Ermiyas Lakew;Amirhosein Sarchami;G. Giustini;Hyungdae Kim;K. Bellur
  • 通讯作者:
    Ermiyas Lakew;Amirhosein Sarchami;G. Giustini;Hyungdae Kim;K. Bellur
MODELLING AND MEASUREMENT OF VAPOUR BUBBLE GROWTH IN POOL BOILING OF WATER AT ATMOSPHERIC PRESSURE
水在大气压下沸腾时的蒸汽气泡生长的建模和测量
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Giustini G
  • 通讯作者:
    Giustini G
Computational fluid dynamics prediction of subcooled boiling of water using a mechanistic bubble-departure model
  • DOI:
    10.1016/j.nucengdes.2023.112465
  • 发表时间:
    2023-10
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    D. Mitrakos;A. Vouros;Heliana Bougioukou;G. Giustini
  • 通讯作者:
    D. Mitrakos;A. Vouros;Heliana Bougioukou;G. Giustini
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Giovanni Giustini其他文献

Non-negligible buoyancy effect on bubbles travelling in horizontal microchannels of comparable size at small Bond numbers
  • DOI:
    10.1016/j.ijmultiphaseflow.2024.105019
  • 发表时间:
    2024-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Jakub A. Cranmer;Evgenii Sharaborin;Sepideh Khodaparast;Giovanni Giustini;Mirco Magnini
  • 通讯作者:
    Mirco Magnini

Giovanni Giustini的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Giovanni Giustini', 18)}}的其他基金

Modelling surface effects in two-phase fluid processes across scales
跨尺度的两相流体过程中的表面效应建模
  • 批准号:
    EP/T027061/1
  • 财政年份:
    2020
  • 资助金额:
    $ 26.46万
  • 项目类别:
    Fellowship

相似国自然基金

基于酿酒酵母表面展示技术构建细粒棘球绦虫终末宿主口服疫苗株及其免疫效果研究
  • 批准号:
    32360887
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于环糊精的寡聚阴离子表面活性剂的合成、其聚集及吸附行为及其对土壤中稠环芳烃污染物的増溶效果研究
  • 批准号:
    22102217
  • 批准年份:
    2021
  • 资助金额:
    24.00 万元
  • 项目类别:
    青年科学基金项目
表面纳米结构优化增强太阳电池陷光效果研究
  • 批准号:
    62011530022
  • 批准年份:
    2020
  • 资助金额:
    20 万元
  • 项目类别:
    国际(地区)合作与交流项目
纤维束表面拓扑结构介导EMD调控Hippo通路对拔牙窝“位点保存”的作用效果及机制
  • 批准号:
    81900980
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Computer modelling of irregular nonlinear surface waves and their effects on offshore wind turbine structures
不规则非线性表面波的计算机建模及其对海上风力发电机结构的影响
  • 批准号:
    2889685
  • 财政年份:
    2023
  • 资助金额:
    $ 26.46万
  • 项目类别:
    Studentship
Modelling surface effects in two-phase fluid processes across scales
跨尺度的两相流体过程中的表面效应建模
  • 批准号:
    EP/T027061/1
  • 财政年份:
    2020
  • 资助金额:
    $ 26.46万
  • 项目类别:
    Fellowship
Study on long-range effects of object-plasma interactions in space
空间物体-等离子体相互作用的长程效应研究
  • 批准号:
    20K04041
  • 财政年份:
    2020
  • 资助金额:
    $ 26.46万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Modelling Enzymatic Electrostatic Field Effects with Coordination Chemistry
用配位化学模拟酶促静电场效应
  • 批准号:
    9762139
  • 财政年份:
    2018
  • 资助金额:
    $ 26.46万
  • 项目类别:
Modelling Enzymatic Electrostatic Field Effects with Coordination Chemistry
用配位化学模拟酶促静电场效应
  • 批准号:
    10242661
  • 财政年份:
    2018
  • 资助金额:
    $ 26.46万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了