BO-and Monolithic Quantum Dot Semiconductor Optical Amplifier on Silicon

硅基 BO 和单片量子点半导体光放大器

基本信息

  • 批准号:
    EP/T01394X/1
  • 负责人:
  • 金额:
    $ 34.03万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

From an Information and Communication Technology (ICT) perspective, the 21st century is characterized by an explosion of requests for communication capabilities, high-performance computing, and cloud storage. Over the last few years, global Internet traffic has been growing exponentially. In this picture, transporting such an amount of data with existing electrical- interconnects and switching technologies will soon reach the "bottleneck" in terms of thermal loading, capacity, latency and power consumption. Optical- interconnects and switch fabrics combined with photonic integrated circuits (PICs) are seen as one of the most promising routes to push such limits. Silicon (Si) photonics is now considered as a reliable photonic integration platform. The beauty of Si Photonics stems from its ability to integrate microelectronics and photonics on a single Si chip utilizing standard CMOS IC technology. An important subset of this area is hetero-integration of III-Vs on Si, where the aim is the make use of III-V materials, with superior optical properties, to provide an efficient optical gain medium to circumvent the fundamental physical limitation of Si, i.e. Si cannot efficiently emit light, yet keeping the capability of light-routing, modulating, detecting and cost advantages of Si. In a breakthrough development, the investigators' group in UCL have shown that it is possible to grow epitaxially high-performance quantum dot (QD) lasers directly on Si substrates, opening up the possibility to monolithically integrate various types of III-V optoelectronic devices on Si. The pace of research on monolithic III-V/Si integration has then been dramatically accelerated and an increasing number of prestigious research groups including Bowers' group at UCSB and Arakawa's group at Tokyo University, and major Si chip companies, i.e. Intel, are currently devoting considerable programmes in this area. In addition to III-V/Si lasers, monolithic III-V/Si semiconductor optical amplifiers (SOAs) are also attracting significant interest as the key components for next-generation photonic integrated optical- interconnects and switching fabrics, as the application of SOAs is not limited only to compensate for loss and maintain signal levels as the signal propagates throughout a large number of optical components within the PICs, it is also used as a mature gating element for optical switches and has the advantages of ease of control, smaller footprint, low operating voltage, high ON/OFF extinction ratio, and fast transition times of the order of nanoseconds. However, such a III-V/Si SOA has not been developed to date. Building on the established expertise in monolithic III-V/Si QD lasers at UCL, this project proposal aims to develop the world's first monolithic III-V QD SOA on CMOS-compatible on-axis Si (001) substrates. In contrast to conventional native substrate based SOAs or III-V/Si SOAs using either flip-chip bonding or wafer bonding, the proposed method is fundamentally different, since the III-V SOAs will be integrated on Si by direct epitaxial methods, offering the possibility to achieve high-yield, low-cost and large-scale Si-based PICs, which is expected to be the technology platform to address next-generation optical- interconnect and switching solutions. With further development in Si photonics, i.e., providing the microelectronics world with the ultra-large-scale integration of photonic components, there will be scope to target applications in important areas such as consumer electronics, high-performance computing, medical and sensor solutions, and defence. This project will benefit from guidance from and joint work with both industrial as well as academic partners and will leverage major UK-based industrial and academic strengths in materials (e.g., CSC, EPSRC NEF) device processing (e.g., EPSRC CSHub, Glasgow) and photonics (e.g., Rockley, Lumentum), who are also well positioned to exploit this research.
从信息和通信技术(ICT)的角度来看,21世纪的特点是对通信能力、高性能计算和云存储的需求激增。在过去几年中,全球互联网流量呈指数级增长。在这张图中,利用现有的电气互连和交换技术传输如此大量的数据将很快达到热负载、容量、延迟和功耗方面的“瓶颈”。光互连和交换结构与光子集成电路(PIC)相结合被视为突破此类限制的最有前途的途径之一。硅 (Si) 光子学现在被认为是可靠的光子集成平台。硅光子学的美妙之处在于它能够利用标准 CMOS IC 技术将微电子学和光子学集成在单个硅芯片上。该领域的一个重要子集是 III-V 族在 Si 上的异质集成,其目标是利用具有优异光学特性的 III-V 材料来提供有效的光学增益介质,以规避 Si 的基本物理限制,即Si不能有效地发光,但仍保持Si的光路由、调制、检测能力和成本优势。 伦敦大学学院的研究小组取得了突破性进展,表明可以直接在硅衬底上生长外延高性能量子点(QD)激光器,从而为在硅衬底上单片集成各种类型的 III-V 光电器件提供了可能性。斯。随后,单片 III-V/Si 集成的研究步伐急剧加快,越来越多的著名研究小组,包括 UCSB 的 Bowers 小组和东京大学的 Arakawa 小组以及主要的 Si 芯片公司(例如 Intel)目前正在致力于研究该领域的大量计划。除了 III-V/Si 激光器之外,单片 III-V/Si 半导体光放大器 (SOA) 作为下一代光子集成光互连和交换结构的关键组件也引起了人们的极大兴趣,因为 SOA 的应用正在不断发展。它不仅限于在信号在 PIC 内的大量光学元件中传播时补偿损耗和维持信号电平,它还用作光开关的成熟选通元件,具有易于控制、占用空间较小、低运行电压、高开/关消光比以及纳秒量级的快速转换时间。然而,迄今为止,这种 III-V/Si SOA 尚未开发出来。 该项目提案以伦敦大学学院在单片 III-V/Si QD 激光器方面已建立的专业知识为基础,旨在开发世界上第一个位于 CMOS 兼容同轴 Si (001) 衬底上的单片 III-V QD SOA。与使用倒装芯片键合或晶圆键合的基于传统原生衬底的 SOA 或 III-V/Si SOA 相比,所提出的方法具有根本的不同,因为 III-V SOA 将通过直接外延方法集成在 Si 上,从而提供实现高产量、低成本和大规模硅基 PIC 的可能性,有望成为解决下一代光互连和交换解决方案的技术平台。随着硅光子学的进一步发展,即为微电子领域提供超大规模集成的光子器件,将有机会在消费电子、高性能计算、医疗和传感器解决方案等重要领域获得应用。和防御。 该项目将受益于工业和学术合作伙伴的指导和共同合作,并将利用英国在材料(例如,CSC、EPSRC NEF)、设备加工(例如,EPSRC CSHub,格拉斯哥)和光子学(例如 Rockley、Lumentum)也有能力利用这项研究。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electrically pumped continuous-wave O-band quantum-dot superluminescent diode on silicon.
  • DOI:
    10.1364/ol.401042
  • 发表时间:
    2020-09
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Ying Lu;Victoria Cao;M. Liao;Wei Li;M. Tang;Ang Li;P. Smowton;A. Seeds;Huiyun Liu;Siming Chen
  • 通讯作者:
    Ying Lu;Victoria Cao;M. Liao;Wei Li;M. Tang;Ang Li;P. Smowton;A. Seeds;Huiyun Liu;Siming Chen
Theoretical analysis and modelling of degradation for III-V lasers on Si
Si 上 III-V 激光器退化的理论分析和建模
  • DOI:
    10.1088/1361-6463/ac83d3
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Liu J
  • 通讯作者:
    Liu J
Recent Progress of Quantum Dot Lasers Monolithically Integrated on Si Platform
  • DOI:
    10.3389/fphy.2022.839953
  • 发表时间:
    2022-02-14
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Cao, Victoria;Park, Jae-Seong;Liu, Huiyun
  • 通讯作者:
    Liu, Huiyun
Distortion-free amplification of 100 GHz mode-locked optical frequency comb using quantum dot technology.
使用量子点技术对 100 GHz 锁模光学频率梳进行无失真放大。
  • DOI:
    10.1364/oe.486707
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.8
  • 作者:
    Cao V
  • 通讯作者:
    Cao V
Long-wavelength InAs/InAlGaAs quantum dot microdisk lasers on InP (001) substrate
InP (001) 衬底上的长波长 InAs/InAlGaAs 量子点微盘激光器
  • DOI:
    10.1063/5.0142391
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Jia H
  • 通讯作者:
    Jia H
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siming Chen其他文献

Monolithically Integrated Microcavity Lasers on Silicon
硅上单片集成微腔激光器
  • DOI:
    10.1109/acp55869.2022.10089139
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yuanhao Gong;Wentao Xie;Yaoran Huang;Taojie Zhou;Jingwen Ma;M. Tang;Xian;Siming Chen;Huiyun Liu;Zhaoyu Zhang
  • 通讯作者:
    Zhaoyu Zhang
Rapid identification of ultrathin amorphous damage on monocrystalline silicon surface
单晶硅表面超薄非晶损伤的快速识别
  • DOI:
    10.1039/d0cp01370f
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Lei Wu;Bingjun Yu;Pei Zhang;Chengqiang Feng;Peng Chen;Liang Deng;Jian Gao;Siming Chen;Shulan Jiang;Linmao Qian
  • 通讯作者:
    Linmao Qian
Silicon-based III-V quantum dot devices for silicon photonics
用于硅光子学的硅基 III-V 量子点器件
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Tang;Siming Chen;Jiang Wu;M. Liao;Huiyun Liu
  • 通讯作者:
    Huiyun Liu
Unlocking new potentials in energy-efficient carbon dioxide capture: How catalyst-phthalocyanine is leading the way
释放节能二氧化碳捕集的新潜力:催化剂酞菁如何引领潮流
100 GHz Amplified Mode-locked Frequency Comb with 80 Gbaud NRZ Transmission Ability Based on Ultra-fast Quantum Dot Technology
基于超快量子点技术的 100 GHz 放大锁模频率梳,具有 80 Gbaud NRZ 传输能力

Siming Chen的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

分子筛封装的Pt-M双金属蜂窝整体式结构化催化剂的构建及其氢化硝基苯的催化性能研究
  • 批准号:
    22308009
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
UHPC-普通混凝土组合明挖装配整体式地下车站结构抗震性能和设计方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
3D打印Geopolymer/Ag6Si2O7/g-C3N4整体式吸附/光催化剂及其协同降解抗生素机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于低温NH3-SCR反应新型整体式催化剂的构筑及催化活性增强机制的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
张拉整体式微波发射天线的指向调控与振动抑制方法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

EAGER: Quantum Manufacturing: Monolithic integration of telecommunication-band quantum emitters in the 4H-SiC-on-insulator platform
EAGER:量子制造:电信频段量子发射器在绝缘体上 4H-SiC 平台中的单片集成
  • 批准号:
    2240420
  • 财政年份:
    2023
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
Monolithic Quantum Processors in Production FDSOI and FinFET CMOS Technologies
生产中的单片量子处理器 FDSOI 和 FinFET CMOS 技术
  • 批准号:
    RTI-2023-00256
  • 财政年份:
    2022
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Research Tools and Instruments
EAGER: Toward Monolithic Optically-Pumped Single-Photon Sources Based on Deterministic InGaN Quantum Dots in GaN Nanowires
EAGER:基于 GaN 纳米线中确定性 InGaN 量子点的单片光泵浦单光子源
  • 批准号:
    2020015
  • 财政年份:
    2020
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Standard Grant
Building and exploiting a high-performance monolithic trapped-ion quantum computer
构建和开发高性能单片俘获离子量子计算机
  • 批准号:
    MR/S03238X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Fellowship
Cryogenic probestation for mm-wave monolithic quantum computing integrated circuits
毫米波单片量子计算集成电路低温探测
  • 批准号:
    RTI-2019-00550
  • 财政年份:
    2018
  • 资助金额:
    $ 34.03万
  • 项目类别:
    Research Tools and Instruments
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了