FOCUS: Intelligent Fibre Optic Monitoring to Inform the Construction of Underground Services

焦点:智能光纤监控为地下服务建设提供信息

基本信息

  • 批准号:
    EP/T006900/1
  • 负责人:
  • 金额:
    $ 30.51万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

UK construction is a multi-billion pound industry. While it is the most vital cog in the UK economy for creating physical assets, it is widely regarded as slow to innovate. High risks and the significant cost of mistakes promotes a level of conservatism which is much greater compared to other industries. Change therefore tends to be iterative and cautious. Supported by the UK Government through the implementation of various construction initiatives, such as 'Construction 2025' and 'Transforming Construction', the industry is beginning to embrace technology in a transformative way. The technological revolution is already under way for 'above-ground' construction activities, with modular construction and building information modelling being primary examples. One of the biggest obstacles to underground construction making similar gains is uncertainty surrounding how structures interact with soils during construction operations i.e. 'soil-structure interaction' (SSI). Soil-structure interaction plays a critical role in underground construction operations yet the tools that are used to predict them remain remarkably over-conservative. This is because predictive models for SSI are non-existent, over-simplified or are calibrated against measured data obtained from model-scale replicas of the process in the laboratory, essentially representing an 'ideal' soil-structure interface. The work described in this proposal will develop the underpinning engineering science for SSI design applied to underground construction. Laboratory testing and numerical modelling will be used to elucidate the mechanics of soil-structure interface behaviour such as the role of strain level, stress level and time on the development of soil-structure contact stresses and pore water pressures. Intelligent monitoring systems will be developed to measure and monitor soil-structure contact stresses on live construction projects to provide (i) field data for rigorous validation of developed design methods and (ii) real-time, automated feedback to site engineers to inform construction processes and provide 'early warning' of adverse responses. Recent advances in fibre optic sensing will be exploited to develop novel multi-directional contact stress sensors. The new sensors will alleviate limitations associated with traditional transducers such as excessive sensor flexibility (which actually influences the soil stress field the sensors are intended to measure) and immunity to electromagnetic noise and water damage. A multi-directional interface shear apparatus will be developed to validate the contact stress sensors and provide additional insight into the behaviour of an 'ideal' soil-structure interface in the laboratory. The monitoring system will employ machine learning algorithms in the form of Bayesian non-parametrics such that prior data from previous construction projects may be synthesised with newly-acquired data to provide a robust data-driven decision-making process. The monitoring system will be deployed on live construction projects in the UK alongside industry partners. A suite of new design methods tailored specifically for underground construction operations will be developed, informed by the field monitoring, laboratory testing and numerical modelling. Embracing the innovation and technology developed in this project will allow the construction industry to obtain and utilise intelligent and actionable data that can save time and money, and improve construction safety. This will contribute to the UK becoming a global hub for the rapidly growing market for construction-related services throughout the world.
英国建筑是一个数十亿英镑的行业。尽管它是英国经济中最重要的齿轮创造物理资产,但它被广泛认为是创新的缓慢。高风险和错误成本促进了与其他行业相比要大得多的保守主义。因此,变化往往是迭代和谨慎的。在英国政府通过实施各种建筑计划的支持下,例如“建筑2025”和“转型建筑”,该行业开始以变革性的方式采用技术。 “地面”施工活动已经开始进行技术革命,模块化构造和建筑信息建模是主要例子。地下结构的最大障碍之一是围绕结构如何与土壤相互作用在施工过程中的不确定性,即“土壤结构相互作用”(SSI)(SSI)。土壤结构相互作用在地下建筑运营中起着至关重要的作用,但用于预测它们的工具仍然非常保守。这是因为SSI的预测模型不存在,过度简化或针对从实验室中该过程的模型尺度复制品获得的测量数据进行校准,这基本上代表了“理想”的土壤结构界面。该提案中描述的工作将开发用于适用于地下建筑的SSI设计的基础工程科学。实验室测试和数值模型将用于阐明土壤结构界面行为的机制,例如应变水平,应力水平以及时间在土壤结构接触应力和孔隙水压的发展中的作用。将开发智能监测系统,以衡量和监视实时建设项目的土壤结构接触应力,以提供(i)针对开发的设计方法进行严格验证的现场数据,以及(ii)实时的,自动反馈对现场工程师的自动反馈,以告知施工过程并提供不良反应的“预警”。光纤传感的最新进展将被利用,以开发新型的多向接触应力传感器。新的传感器将减轻与传统传感器相关的局限性,例如传感器的灵活性过多(实际上影响了传感器旨在测量的土壤应力场)和对电磁噪声和水损伤的免疫力。将开发多个方向界面剪切设备来验证接触应力传感器,并提供对实验室中“理想”土壤结构界面的行为的更多见解。监测系统将采用贝叶斯非参数形式的机器学习算法,以便可以使用新的施工项目的先前数据与新获得的数据合成以前的数据,以提供强大的数据驱动决策过程。监测系统将与行业合作伙伴一起部署在英国的实时建设项目中。将开发一套专门针对地下建筑操作的新设计方法,并由现场监测,实验室测试和数值建模提供信息。拥抱该项目中开发的创新和技术将使建筑行业获得并利用可以节省时间和金钱并提高建筑安全的智能和可行的数据。这将有助于英国成为全球与建筑相关服务快速增长市场的全球枢纽。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Cutting shoe design for open caissons in sand: influence on vertical bearing capacity
砂中沉箱截靴设计:对竖向承载力的影响
Undrained uplift resistance of under-reamed open caisson shafts
扩孔沉井竖井不排水抗拔力
  • DOI:
    10.1680/jgeot.21.00090
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sheil B
  • 通讯作者:
    Sheil B
Prediction of Pipe-Jacking Forces Using a Bayesian Updating Approach
  • DOI:
    10.1061/(asce)gt.1943-5606.0002645
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    B. Sheil;S. Suryasentana;J. Templeman;B. Phillips;W. Cheng;Limin Zhang
  • 通讯作者:
    B. Sheil;S. Suryasentana;J. Templeman;B. Phillips;W. Cheng;Limin Zhang
Comparison of Insar and Numerical Modelling for Tailings Dam Monitoring the Cadia Failure, Australia
澳大利亚卡迪亚溃坝监测尾矿坝 Insar 模型与数值模型的比较
  • DOI:
    10.1109/igarss46834.2022.9883604
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bayaraa M
  • 通讯作者:
    Bayaraa M
Bearing capacity of open caissons embedded in sand
埋砂沉箱的承载力
  • DOI:
    10.1680/jgeot.21.00089
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sheil B
  • 通讯作者:
    Sheil B
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Brian Sheil其他文献

Ground settlement prediction for open caisson shafts in sand using a neural network constrained by empiricism
使用受经验约束的神经网络预测沙中沉井的地面沉降
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.3
  • 作者:
    G. Song;Yuan He;Brian Sheil;James Morris
  • 通讯作者:
    James Morris
Entity Embeddings in Remote Sensing: Application to Deformation Monitoring for Infrastructure
遥感中的实体嵌入:在基础设施变形监测中的应用
  • DOI:
    10.3390/rs15204910
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Maral Bayaraa;Cristian Rossi;F. Kalaitzis;Brian Sheil
  • 通讯作者:
    Brian Sheil
A three-stage approach based on 1D-CNNs for AE source localisation on historic fibrous plaster ceilings
基于 1D-CNN 的三阶段方法,用于历史纤维石膏天花板上的声发射源定位
  • DOI:
    10.1177/14759217241245309
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jiaxu Zuo;Brian Sheil;S. Acikgoz
  • 通讯作者:
    S. Acikgoz
Multi-fidelity fusion for soil classification via LSTM and multi-head self-attention CNN model
  • DOI:
    10.1016/j.aei.2024.102655
  • 发表时间:
    2024-10-01
  • 期刊:
  • 影响因子:
  • 作者:
    Xiaoqi Zhou;Brian Sheil;Stephen Suryasentana;Peixin Shi
  • 通讯作者:
    Peixin Shi
Digital twins for urban underground space
  • DOI:
    10.1016/j.tust.2024.106140
  • 发表时间:
    2025-01-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nandeesh Babanagar;Brian Sheil;Jelena Ninić;Qianbing Zhang;Stuart Hardy
  • 通讯作者:
    Stuart Hardy

Brian Sheil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Brian Sheil', 18)}}的其他基金

PERMEATION OF POLYMER FLUIDS IN SOILS (PoPFS)
聚合物流体在土壤中的渗透 (PoPFS)
  • 批准号:
    EP/X034453/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.51万
  • 项目类别:
    Research Grant

相似国自然基金

大智慧还是小聪明?绩效压力对创造性绩效的双面效应机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    47 万元
  • 项目类别:
从"聪明基因"NR2B途径探讨α2肾上腺素受体激动剂对血管性痴呆大鼠认知功能的调节作用
  • 批准号:
    81100873
  • 批准年份:
    2011
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

SPECTRAIL - Low cost intelligent infrastructure through fibre acoustic transmission.
SPECTRAIL - 通过光纤声学传输的低成本智能基础设施。
  • 批准号:
    971652
  • 财政年份:
    2019
  • 资助金额:
    $ 30.51万
  • 项目类别:
    Small Business Research Initiative
SWIFT: Smart Wearable Intelligent Fibre-based Technology
SWIFT:智能可穿戴智能光纤技术
  • 批准号:
    EP/P02534X/2
  • 财政年份:
    2019
  • 资助金额:
    $ 30.51万
  • 项目类别:
    Research Grant
SWIFT: Smart Wearable Intelligent Fibre-based Technology
SWIFT:智能可穿戴智能光纤技术
  • 批准号:
    EP/P02534X/1
  • 财政年份:
    2017
  • 资助金额:
    $ 30.51万
  • 项目类别:
    Research Grant
Bridge Health Monitoring using an Intelligent System based on Bragg Grating Fibre Optic Sensors
使用基于布拉格光栅光纤传感器的智能系统进行桥梁健康监测
  • 批准号:
    LP0347804
  • 财政年份:
    2003
  • 资助金额:
    $ 30.51万
  • 项目类别:
    Linkage Projects
Intelligent and objective measurement of wool fibre diameter
智能、客观测量羊毛纤维直径
  • 批准号:
    DP0342553
  • 财政年份:
    2003
  • 资助金额:
    $ 30.51万
  • 项目类别:
    Discovery Projects
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了