UK National Quantum Technology Hub in Sensing and Timing
英国国家传感和计时量子技术中心
基本信息
- 批准号:EP/T001046/1
- 负责人:
- 金额:$ 3636.26万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Quantum Technology Hub in Sensors and Timing, a collaboration between 7 universities, NPL, BGS and industry, will bring disruptive new capability to real world applications with high economic and societal impact to the UK. The unique properties of QT sensors will enable radical innovations in Geophysics, Health Care, Timing Applications and Navigation. Our established industry partnerships bring a focus to our research work that enable sensors to be customised to the needs of each application. The total long term economic impact could amount to ~10% of GDP. Gravity sensors can see beneath the surface of the ground to identify buried structures that result in enormous cost to construction projects ranging from rail infrastructure, or sink holes, to brownfield site developments. Similarly they can identify oil resources and magma flows. To be of practical value, gravity sensors must be able to make rapid measurements in challenging environments. Operation from airborne platforms, such as drones, will greatly reduce the cost of deployment and bring inaccessible locations within reach. Mapping brain activity in patients with dementia or schizophrenia, particularly when they are able to move around and perform tasks which stimulate brain function, will help early diagnosis and speed the development of new treatments. Existing brain imaging systems are large and unwieldy; it is particularly difficult to use them with children where a better understanding of epilepsy or brain injury would be of enormous benefit. The systems we will develop will be used initially for patients moving freely in shielded rooms but will eventually be capable of operation in less specialised environments. A new generation of QT based magnetometers, manufactured in the UK, will enable these advances. Precision timing is essential to many systems that we take for granted, including communications and radar. Ultra-precise oscillators, in a field deployable package, will enable radar systems to identify small slow-moving targets such as drones which are currently difficult to detect, bringing greater safety to airports and other sensitive locations. Our world is highly dependent on precise navigation. Although originally developed for defence, our civil infrastructure is critically reliant on GNSS. The ability to fix one's location underground, underwater, inside buildings or when satellite signals are deliberately disrupted can be greatly enhanced using QT sensing. Making Inertial Navigation Systems more robust and using novel techniques such as gravity map matching will alleviate many of these problems. In order to achieve all this, we will drive advanced physics research aimed at small, low power operation and translate it into engineered packages to bring systems of unparalleled capability within the reach of practical applications. Applied research will bring out their ability to deliver huge societal and economic benefit. By continuing to work with a cohort of industry partners, we will help establish a complete ecosystem for QT exploitation, with global reach but firmly rooted in the UK. These goals can only be met by combining the expertise of scientists and engineers across a broad spectrum of capability. The ability to engineer devices that can be deployed in challenging environments requires contributions from physics electronic engineering and materials science. The design of systems that possess the necessary characteristics for specific applications requires understanding from civil and electronic engineering, neuroscience and a wide range of stakeholders in the supply chain. The outputs from a sensor is of little value without the ability to translate raw data into actionable information: data analysis and AI skills are needed here. The research activities of the hub are designed to connect and develop these skills in a coordinated fashion such that the impact on our economy is accelerated.
传感器和时机中的量子技术中心是7所大学,NPL,BGS和行业之间的合作,将为英国带来巨大的经济和社会影响的现实世界应用的破坏性新能力。 QT传感器的独特性能将实现地球物理,医疗保健,时机应用和导航的根本创新。我们建立的行业伙伴关系将重点放在我们的研究工作中,使传感器能够根据每个应用程序的需求进行定制。长期经济影响可能占GDP的约10%。重力传感器可以看到地面的下方,以识别埋藏的结构,从而导致从铁路基础设施或下沉孔到布朗菲尔德现场开发的建筑项目成本巨大。同样,他们可以识别石油资源和岩浆流。为了实用价值,重力传感器必须能够在具有挑战性的环境中进行快速测量。空降平台(例如无人机)的运行将大大降低部署成本,并将无法访问的位置带入到达。绘制痴呆症或精神分裂症患者的大脑活动,尤其是当他们能够四处走动并执行刺激大脑功能的任务时,将有助于尽早诊断和加快新疗法的发展。现有的大脑成像系统大而笨拙。与孩子更好地了解癫痫或脑损伤将带来巨大好处,这是特别困难的。我们将开发的系统最初将用于在屏蔽房间中自由移动的患者,但最终将能够在较少的专业环境中运行。在英国制造的新一代基于QT的磁力计将使这些进步能够实现。精确时机对于我们认为理所当然的许多系统至关重要,包括通信和雷达。在现场可部署的软件包中,超专有振荡器将使雷达系统能够识别小型缓慢移动的目标,例如目前难以检测到的无人机,为机场和其他敏感位置带来更大的安全性。我们的世界高度依赖于精确的导航。尽管最初是为防御而开发的,但我们的民用基础设施依赖于GNSS。使用QT传感,可以大大增强自己在地下,水下,建筑物内部或卫星信号时固定位置的能力。使惯性导航系统更强大,并使用新颖的技术(例如重力图匹配)可以减轻其中许多问题。为了实现这一切,我们将推动针对小型,低功率操作的高级物理研究,并将其转化为工程包装,以将无与伦比的能力系统带入实际应用程序中。应用研究将带来他们带来巨大社会和经济利益的能力。通过继续与一系列行业合作伙伴合作,我们将帮助建立一个完整的QT剥削生态系统,并具有全球范围,但扎根于英国。只有通过将科学家和工程师的专业知识结合在一起,才能实现这些目标。可以在充满挑战的环境中部署的设备的能力需要物理电子工程和材料科学的贡献。具有针对特定应用的必要特征的系统的设计需要对供应链中的民用和电子工程,神经科学以及广泛的利益相关者的了解。传感器的输出几乎没有价值,没有能够将原始数据转化为可行的信息:此处需要数据分析和AI技能。枢纽的研究活动旨在以协调的方式联系和发展这些技能,以便加快对我们经济的影响。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Simulation Study of the Temperature Sensitivity and Impact of Fabrication Tolerances on the Performance of a Geometric Anti-Spring Based MEMS Gravimeter
温度敏感性和制造公差对几何抗弹簧 MEMS 重力计性能影响的仿真研究
- DOI:10.1109/inertial53425.2022.9787761
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Belwanshi V
- 通讯作者:Belwanshi V
The development of a High data rate atom interferometric gravimeter (HIDRAG) for gravity map matching navigation
- DOI:10.1109/inertial51137.2021.9430461
- 发表时间:2021-01-01
- 期刊:
- 影响因子:0
- 作者:Adams, Benjamin;Macrae, Calum;Bongs, Kai
- 通讯作者:Bongs, Kai
Optimising the sensing volume of OPM sensors for MEG source reconstruction.
- DOI:10.1016/j.neuroimage.2022.119747
- 发表时间:2022-12-01
- 期刊:
- 影响因子:5.7
- 作者:Bezsudnova Y;Koponen LM;Barontini G;Jensen O;Kowalczyk AU
- 通讯作者:Kowalczyk AU
Use of Symmetrical Peak Extraction in Drone Micro-Doppler Classification for Staring Radar
对称峰值提取在无人机微多普勒雷达分类中的应用
- DOI:10.1109/radarconf2043947.2020.9266702
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Bennett C
- 通讯作者:Bennett C
Magneto-optical trap performance for high-bandwidth applications
适用于高带宽应用的磁光陷阱性能
- DOI:10.1103/physreva.108.063111
- 发表时间:2023
- 期刊:
- 影响因子:2.9
- 作者:Adams B
- 通讯作者:Adams B
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Michael Holynski其他文献
Michael Holynski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Michael Holynski', 18)}}的其他基金
QT Gravity for the Global Geodetic Reference Frame
全球大地测量参考系的 QT 重力
- 批准号:
EP/X036332/1 - 财政年份:2023
- 资助金额:
$ 3636.26万 - 项目类别:
Research Grant
Differential atom interferometry and velocity selection using the clock transition of strontium atoms for AION
AION 中使用锶原子时钟跃迁的微分原子干涉测量和速度选择
- 批准号:
ST/W006448/1 - 财政年份:2022
- 资助金额:
$ 3636.26万 - 项目类别:
Research Grant
AION: A UK Atom Interferometer Observatory and Network
AION:英国原子干涉仪天文台和网络
- 批准号:
ST/T006536/1 - 财政年份:2021
- 资助金额:
$ 3636.26万 - 项目类别:
Research Grant
TORQUE: Atom Interferometric Rotation Sensor for Quantum Enhanced Navigation
TORQUE:用于量子增强导航的原子干涉旋转传感器
- 批准号:
EP/S004041/1 - 财政年份:2018
- 资助金额:
$ 3636.26万 - 项目类别:
Research Grant
相似国自然基金
中国企业网络内的利润转移、税基侵蚀与国家税治能力建设研究
- 批准号:72303176
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
星空地观测协同的祁连山国家公园森林地上生物量估算
- 批准号:42371325
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
国家公园内人工橡胶林自然恢复过程中的土壤有机碳动态及其成因
- 批准号:32360319
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
典型地下河对喀斯特洞穴植物多样性格局形成的作用:以凤山岩溶国家地质公园为例
- 批准号:32360297
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
主体异质性视角下国家战略科技力量推进关键核心技术创新的效应、路径与对策研究
- 批准号:72304276
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Conference: Workshop on a National Center for Quantum Education and Workforce Development
会议:国家量子教育和劳动力发展中心研讨会
- 批准号:
2405381 - 财政年份:2024
- 资助金额:
$ 3636.26万 - 项目类别:
Standard Grant
国内養蜂家を対象としたローヤルゼリー多収系統の造成に関する量的・分子遺伝学的研究
国内养蜂人高产蜂王浆品系创建的定量和分子遗传学研究
- 批准号:
24K09217 - 财政年份:2024
- 资助金额:
$ 3636.26万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
- 批准号:
10638121 - 财政年份:2023
- 资助金额:
$ 3636.26万 - 项目类别:
Elucidating the dynamical and structural molecular factors at the origin of non-enzymatic protein-protein and protein-DNA cross-links
阐明非酶蛋白质-蛋白质和蛋白质-DNA 交联起源的动力学和结构分子因素
- 批准号:
10709399 - 财政年份:2023
- 资助金额:
$ 3636.26万 - 项目类别:
Orbitrap Eclipse Tribrid Mass Spectrometer as a Regional Resource
Orbitrap Eclipse Tribrid 质谱仪作为区域资源
- 批准号:
10629013 - 财政年份:2023
- 资助金额:
$ 3636.26万 - 项目类别: