Deterministic and probabilistic dynamics of nonlinear dispersive PDEs

非线性色散偏微分方程的确定性和概率动力学

基本信息

  • 批准号:
    EP/S033157/1
  • 负责人:
  • 金额:
    $ 29.47万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

Nonlinear dispersive partial differential equations (PDEs) such as the nonlinear wave equations and the nonlinear Schrodinger equations, are time evolution equations modelling wave phenomena. They appear ubiquitously in various branches of physics and engineering such as nonlinear optics, plasma physics, water waves and telecommunication systems. Their validity is widely recognised and supported by numerical and experimental evidences.On the one hand, the mathematical theoretical research of nonlinear dispersive PDEs is important for applied sciences since it has provided solid foundations for the verification and applicability of these models. On the other hand, this theoretical research has proved to be very valuable for mathematics itself. Indeed, over the last thirty years, nonlinear dispersive PDEs have presented very difficult and interesting challenges, motivating the development of many new ideas and techniques in mathematical analysis. One of the sources of richness of nonlinear dispersive PDEs is that each subclass of equations poses its own difficulties, thus requiring the elaboration of specific tools.The aim of this proposal is to explore the dynamics of nonlinear dispersive PDEs using mathematical analysis from both deterministic and probabilistic points of view. In the deterministic setting, this proposal focuses on (i) constructing special solutions to a class of nonlinear Schrodinger equations and (ii) proving the long-time existence of solutions to an equation from plasma physics with non-constant vorticity. The principal investigator (PI) plans to combine PDE techniques with tools from harmonic analysis and spectral theory.In the traditional (deterministic) study of nonlinear evolution equations, one aims to construct solutions to a given PDE for all initial data. In applications, however, one is often content with understanding the behaviour of typical solutions, neglecting rare pathological behaviours. This point of view can be made rigorous by employing probability theory and has led to exciting developments over the last decade. In particular, it has allowed us to go beyond the limits of deterministic analysis. One aspect of this proposal is to investigate dynamics of nonlinear dispersive PDEs from a probabilistic point of view. More specifically, the PI will focus on constructing well-defined dynamics with rough and random initial data by incorporating ideas and tools from probability theory and the very active field of singular stochastic PDEs.
非线性色散偏微分方程(PDE),例如非线性波动方程和非线性薛定谔方程,是模拟波动现象的时间演化方程。它们普遍出现在物理学和工程学的各个分支中,例如非线性光学、等离子体物理学、水波和电信系统。它们的有效性得到了数值和实验证据的广泛认可和支持。一方面,非线性色散偏微分方程的数学理论研究对于应用科学具有重要意义,因为它为这些模型的验证和适用性提供了坚实的基础。另一方面,这一理论研究也被证明对于数学本身来说是非常有价值的。事实上,在过去的三十年里,非线性色散偏微分方程提出了非常困难和有趣的挑战,推动了数学分析中许多新思想和技术的发展。非线性色散偏微分方程丰富的来源之一是方程的每个子类都有其自身的困难,因此需要精心设计特定的工具。本提案的目的是使用确定性和数学分析来探索非线性色散偏微分方程的动力学。概率的观点。在确定性环境中,该提案侧重于(i)构造一类非线性薛定谔方程的特殊解,以及(ii)证明具有非恒定涡度的等离子体物理方程解的长期存在性。首席研究员 (PI) 计划将偏微分方程技术与调和分析和谱理论工具相结合。 在非线性演化方程的传统(确定性)研究中,目标是为所有初始数据构造给定偏微分方程的解。然而,在应用中,人们往往满足于理解典型解决方案的行为,而忽略了罕见的病态行为。这种观点可以通过运用概率论来变得严格,并在过去十年中带来了令人兴奋的发展。特别是,它使我们能够超越确定性分析的限制。该提案的一个方面是从概率的角度研究非线性色散偏微分方程的动力学。更具体地说,PI 将专注于通过结合概率论和非常活跃的奇异随机偏微分方程领域的思想和工具,利用粗糙和随机的初始数据构建明确的动力学。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Probabilistic local well-posedness of the cubic nonlinear wave equation in negative Sobolev spaces
  • DOI:
  • 发表时间:
    2019-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tadahiro Oh;Oana Pocovnicu;N. Tzvetkov
  • 通讯作者:
    Tadahiro Oh;Oana Pocovnicu;N. Tzvetkov
Ground state energy threshold and blow-up for NLS with competing nonlinearities
Qualitative Properties of Dispersive PDEs
色散偏微分方程的定性性质
  • DOI:
    10.1007/978-981-19-6434-3_2
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bellazzini J
  • 通讯作者:
    Bellazzini J
Probabilistic local Cauchy theory of the cubic nonlinear wave equation in negative Sobolev spaces
负Sobolev空间中三次非线性波动方程的概率局部柯西理论
Dynamics of solutions to the Gross-Pitaevskii equation describing dipolar Bose-Einstein condensates
  • DOI:
  • 发表时间:
    2021-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Bellazzini;Luigi Forcella
  • 通讯作者:
    J. Bellazzini;Luigi Forcella
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oana Pocovnincu其他文献

Oana Pocovnincu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

低矮建筑风雨荷载及抗风雨设计的概率性评价方法研究
  • 批准号:
    52268023
  • 批准年份:
    2022
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
基于概念漂移和混合集成的电力负荷在线概率性预测方法研究
  • 批准号:
    72171068
  • 批准年份:
    2021
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
考虑概率性竞争失效行为的物联网系统可靠性分析
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于不确定性度量的热带气旋风灾概率性风险评估方法研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于多遥测参数概率性建模的航天器电源系统在线异常检测方法
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
  • 批准号:
    1800852
  • 财政年份:
    2018
  • 资助金额:
    $ 29.47万
  • 项目类别:
    Continuing Grant
Collaborative Research: Dynamics of Nonlinear Partial Differential Equations: Integrating Deterministic and Probabilistic Methods
合作研究:非线性偏微分方程的动力学:集成确定性和概率方法
  • 批准号:
    1764403
  • 财政年份:
    2018
  • 资助金额:
    $ 29.47万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
  • 批准号:
    1463714
  • 财政年份:
    2015
  • 资助金额:
    $ 29.47万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
  • 批准号:
    1462401
  • 财政年份:
    2015
  • 资助金额:
    $ 29.47万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Long-Term Dynamics of Nonlinear Dispersive and Hyperbolic Equations: Deterministic and Probabilistic Methods
FRG:协作研究:非线性色散和双曲方程的长期动力学:确定性和概率方法
  • 批准号:
    1463746
  • 财政年份:
    2015
  • 资助金额:
    $ 29.47万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了