Superconducting Ferromagnetic Metamaterials Enabling the Development of Resilient High Voltage / High Current Transmission Systems

超导铁磁超材料促进弹性高压/大电流传输系统的开发

基本信息

  • 批准号:
    EP/S025707/1
  • 负责人:
  • 金额:
    $ 30.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

The need for a technological breakthrough in high voltage power transmission lines for resilient and environmentally friendly urban grids, as well as for the transport of power over long distances from renewable energy sources to load centers, is an undeniable reality that needs to be addressed today. Of course, this is the case if we want to cope with the demand of electric power and massive electric vehicle use expected in the next few decades. SUPERFEM responds to this need by proposing a new set of novel metamaterials which brings together the outstanding electric characteristics of High Temperature Superconducting materials (HTS) with, the shielding magnetic properties of Soft Ferromagnetic layers (SFM), introducing them in the design of power conductors for HVDC and three-phase HVAC networks with nearly zero magnetic leakages and power losses. It is already known that although the HTS conductors offer unbeatable performance features for each one of these networks, their benefits are certainly true when single cables or isolated current-phases are considered, as the large inductive losses produced by any neighbouring cable can be neglected. However, as the electric utility industry for generation and end usage are almost exclusively AC, for three phase power systems or DC systems which will have to share the right of way with them, the reality is that the major factor contributing to the operational costs of HTS networks is the losses produced by the magnetic field created by each one of the other cables, a situation that can only be understood by the numerical modelling of these kind of applications, as the occurrence of hysteretic power losses needs to be calculated to the fore. For the modelling of real power applications of HTS single- and three-phase power transmission lines, a conductor is more than just the HTS material, and in this sense two major types of insulation schemes for retrofitting underground power transmission lines with HTS conductors, the Warm dielectric (W-) and Cold dielectric (C-) designs will be considered, with the novel feature of adding HTS/SFM metastructures to reduce the hysteretic losses of the entire system. In a first stage, we will embed a multifilamentary HTS cable into SFM sheaths, such that the magnetization losses produced by the concomitant action of co-axial cables is reduced or, virtually eliminated, without the need of having further HTS shields which also serve as an additional source of power losses. Similar metastructures have been demonstrated to enhance the mechanical properties of HTS cables, but its electromagnetic behaviour for different superconducting and ferromagnetic composites and their overall performance under three-phase or DC multiconductor configurations is unknown. We aim to study different magnetic sheaths for HTS/SFM warm conductors into the actual commercial market of SFMs for power applications. In this sense, 33 different SFM materials with relative magnetic permeability ranging from ~1 to 35000 will be considered as part of this project, leading to the world's first map of AC-losses for single phase HTS/SFM transmission lines. This will be then extended to triaxial and triad designs of warm and cold dielectric transmission lines, finding the best route of investment for this technology with a significant cost reduction and efficiency gain as the primary targets.The research proposed in this project is the first of its kind on the search of energy-efficient and resilient transmission networks, which in the long term aims to mitigate costs of grid reinforcement, replacement and upgrade of fault limiters and other power management devices, with greater levels of public acceptance and lowering of installation costs, due their reduced need for use of the right of way in highly populated areas.
高压输电线路需要实现技术突破,以实现弹性和环保的城市电网,以及从可再生能源到负荷中心的长距离电力传输,这是当今需要解决的不可否认的现实。当然,如果我们想应对未来几十年的电力需求和电动汽车的大量使用,情况就是如此。 SUPERFEM 响应这一需求,提出了一套新的新型超材料,它将高温超导材料 (HTS) 的出色电气特性与软铁磁层 (SFM) 的屏蔽磁特性结合在一起,并将其引入电力导体的设计中适用于 HVDC 和三相 HVAC 网络,漏磁和功率损耗几乎为零。众所周知,虽然高温超导导体为这些网络中的每一个提供了无与伦比的性能特征,但当考虑单根电缆或隔离电流相位时,它们的好处肯定是真实的,因为任何相邻电缆产生的大电感损耗都可以忽略不计。然而,由于发电和终端使用的电力行业几乎完全是交流电,对于必须与其共享路权的三相电力系统或直流系统来说,现实情况是,影响运营成本的主要因素HTS 网络是由其他每根电缆产生的磁场产生的损耗,这种情况只能通过此类应用的数值建模来理解,因为需要提前计算磁滞功率损耗的发生。对于高温超导单相和三相输电线路实际功率应用的建模,导体不仅仅是高温超导材料,从这个意义上说,用高温超导导体改造地下输电线路的两种主要绝缘方案,将考虑暖电介质 (W-) 和冷电介质 (C-) 设计,并添加 HTS/SFM 元结构以减少整个系统的磁滞损耗。在第一阶段,我们将多丝 HTS 电缆嵌入 SFM 护套中,从而减少或几乎消除同轴电缆的伴随作用产生的磁化损耗,而无需进一步的 HTS 屏蔽层,该屏蔽层也可用作另一个功率损耗来源。类似的元结构已被证明可以增强高温超导电缆的机械性能,但不同超导和铁磁复合材料的电磁行为及其在三相或直流多导体配置下的整体性能尚不清楚。我们的目标是将 HTS/SFM 温导体的不同磁护套研究到电力应用 SFM 的实际商业市场中。从这个意义上说,相对磁导率范围从 ~1 到 35000 的 33 种不同的 SFM 材料将被视为该项目的一部分,从而绘制出世界上第一个单相 HTS/SFM 传输线的交流损耗图。然后,该研究将扩展到热电介质和冷电介质传输线的三轴和三重设计,以显着降低成本和提高效率为主要目标,找到该技术的最佳投资途径。该项目提出的研究是第一个这种类型致力于寻找节能和有弹性的输电网络,从长远来看,旨在降低电网加固、更换和升级故障限制器和其他电力管理设备的成本,提高公众接受度并降低安装成本,由于他们减少了使用路权的需要人口稠密的地区。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electromagnetic analysis and AC losses of triaxial cables with multiple 2G-HTS layers per phase
每相具有多个 2G-HTS 层的三轴电缆的电磁分析和交流损耗
  • DOI:
    10.1016/j.supcon.2023.100039
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Clegg M
  • 通讯作者:
    Clegg M
Computational Modelling of Russia's First 2G-HTS Triaxial Cable
俄罗斯第一条 2G-HTS 三轴电缆的计算建模
Impact of the Magneto Angular Dependence of the Critical Current Density in CORC Cables
CORC 电缆中临界电流密度的磁角依赖性的影响
Critical State Theory For The Magnetic Coupling Between Soft Ferromagnetic Materials And Type-II Superconductors
软铁磁材料与II型超导体磁耦合的临界态理论
  • DOI:
    10.48550/arxiv.2109.02604
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fareed M
  • 通讯作者:
    Fareed M
3D FEM Modelling of CORC Commercial Cables with Bean's like magnetization currents and its AC-Losses Behaviour
具有 Bean 类磁化电流的 CORC 商用电缆的 3D FEM 建模及其交流损耗行为
  • DOI:
    10.48550/arxiv.2201.07641
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fareed M
  • 通讯作者:
    Fareed M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HAROLD RUIZ RONDAN其他文献

HAROLD RUIZ RONDAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

超快激光操控反铁磁材料自旋动力学的第一性原理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
反铁磁结构材料的超快自旋动力学研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
高居里温度铁磁二维材料的超原子构筑与磁性调控研究
  • 批准号:
    11974277
  • 批准年份:
    2019
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
铁磁金属/钡铁氧体复合吸波材料的双负电磁参数调控
  • 批准号:
    51601105
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目
基于铁磁微丝-碳纤维增强树脂基复合材料的反射型超构表面研究
  • 批准号:
    51303039
  • 批准年份:
    2013
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Superconducting Ferromagnetic Metamaterials Enabling the Development of Resilient High Voltage / High Current Transmission Systems
超导铁磁超材料促进弹性高压/大电流传输系统的开发
  • 批准号:
    2438289
  • 财政年份:
    2020
  • 资助金额:
    $ 30.95万
  • 项目类别:
    Studentship
Investigation of unconventional superconducting phenomena induced in ferromagnetic semiconductors
研究铁磁半导体中诱发的非常规超导现象
  • 批准号:
    17K05492
  • 财政年份:
    2017
  • 资助金额:
    $ 30.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation, Imaging and Control of Novel Coherent Electronic States in Artificial Ferromagnetic-Superconducting Hybrid Metamaterials and Devices
人造铁磁-超导混合超材料和器件中新型相干电子态的生成、成像和控制
  • 批准号:
    EP/J010626/1
  • 财政年份:
    2012
  • 资助金额:
    $ 30.95万
  • 项目类别:
    Research Grant
Generation, Imaging and Control of Novel Coherent Electronic States in Artificial Ferromagnetic-Superconducting Hybrid Metamaterials and Devices
人造铁磁-超导混合超材料和器件中新型相干电子态的生成、成像和控制
  • 批准号:
    EP/J01060X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 30.95万
  • 项目类别:
    Research Grant
Generation, Imaging and Control of Novel Coherent Electronic States in Artificial Ferromagnetic-Superconducting Hybrid Metamaterials and Devices
人造铁磁-超导混合超材料和器件中新型相干电子态的生成、成像和控制
  • 批准号:
    EP/J010618/1
  • 财政年份:
    2012
  • 资助金额:
    $ 30.95万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了