Superconducting Ferromagnetic Metamaterials Enabling the Development of Resilient High Voltage / High Current Transmission Systems

超导铁磁超材料促进弹性高压/大电流传输系统的开发

基本信息

  • 批准号:
    EP/S025707/1
  • 负责人:
  • 金额:
    $ 30.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    已结题

项目摘要

The need for a technological breakthrough in high voltage power transmission lines for resilient and environmentally friendly urban grids, as well as for the transport of power over long distances from renewable energy sources to load centers, is an undeniable reality that needs to be addressed today. Of course, this is the case if we want to cope with the demand of electric power and massive electric vehicle use expected in the next few decades. SUPERFEM responds to this need by proposing a new set of novel metamaterials which brings together the outstanding electric characteristics of High Temperature Superconducting materials (HTS) with, the shielding magnetic properties of Soft Ferromagnetic layers (SFM), introducing them in the design of power conductors for HVDC and three-phase HVAC networks with nearly zero magnetic leakages and power losses. It is already known that although the HTS conductors offer unbeatable performance features for each one of these networks, their benefits are certainly true when single cables or isolated current-phases are considered, as the large inductive losses produced by any neighbouring cable can be neglected. However, as the electric utility industry for generation and end usage are almost exclusively AC, for three phase power systems or DC systems which will have to share the right of way with them, the reality is that the major factor contributing to the operational costs of HTS networks is the losses produced by the magnetic field created by each one of the other cables, a situation that can only be understood by the numerical modelling of these kind of applications, as the occurrence of hysteretic power losses needs to be calculated to the fore. For the modelling of real power applications of HTS single- and three-phase power transmission lines, a conductor is more than just the HTS material, and in this sense two major types of insulation schemes for retrofitting underground power transmission lines with HTS conductors, the Warm dielectric (W-) and Cold dielectric (C-) designs will be considered, with the novel feature of adding HTS/SFM metastructures to reduce the hysteretic losses of the entire system. In a first stage, we will embed a multifilamentary HTS cable into SFM sheaths, such that the magnetization losses produced by the concomitant action of co-axial cables is reduced or, virtually eliminated, without the need of having further HTS shields which also serve as an additional source of power losses. Similar metastructures have been demonstrated to enhance the mechanical properties of HTS cables, but its electromagnetic behaviour for different superconducting and ferromagnetic composites and their overall performance under three-phase or DC multiconductor configurations is unknown. We aim to study different magnetic sheaths for HTS/SFM warm conductors into the actual commercial market of SFMs for power applications. In this sense, 33 different SFM materials with relative magnetic permeability ranging from ~1 to 35000 will be considered as part of this project, leading to the world's first map of AC-losses for single phase HTS/SFM transmission lines. This will be then extended to triaxial and triad designs of warm and cold dielectric transmission lines, finding the best route of investment for this technology with a significant cost reduction and efficiency gain as the primary targets.The research proposed in this project is the first of its kind on the search of energy-efficient and resilient transmission networks, which in the long term aims to mitigate costs of grid reinforcement, replacement and upgrade of fault limiters and other power management devices, with greater levels of public acceptance and lowering of installation costs, due their reduced need for use of the right of way in highly populated areas.
需要在高压电力输电线路中进行技术突破,以实现弹性和环保的城市网格,以及从可再生能源到负载中心的长距离运输,这是一个不可否认的现实,今天需要解决。当然,如果我们想应对未来几十年预期的电力和大量电动汽车使用的需求,就是这种情况。 SuperFEM通过提出一套新型的超材料来应对这一需求,这些新型超材料将高温超导材料(HTS)的出色电特性与软铁磁层(SFM)的屏蔽磁性质(SFM)汇总在一起,并将它们引入HVDC和HVASE HVACE HVASE HVASE HVASE HVASE HVASE HVASE HVASE HVASE HVASE HVASE和三个镜头的磁性泄漏和零磁性泄漏的设计中。众所周知,尽管HTS导体为每个网络提供了无与伦比的性能功能,但是当考虑到单一电缆或孤立的电流强度时,它们的好处肯定是正确的,因为可以忽略任何相邻电缆产生的大电感损失。但是,由于用于发电和最终用法的电力效用行业几乎完全是AC,对于必须与它们共享的三个相位电力系统或DC系统,它们必须与它们共享的行为,因此,实际上有助于HTS网络的运营成本的主要因素是由每个电缆所造成的磁场所产生的磁场所产生的损失,仅由其他电缆造成的损失是由这些损失所造成的,而这些损失是通过这些数字模型所造成的。需要计算到最初。为了建模HTS单相和三相动力传输线的实际功率应用,导体不仅仅是HTS材料,在这个意义上,两种主要类型的绝缘方案用于使用HTS导体进行地下电力传输线进行翻新,将其添加到HTS的HTS导体中,并将​​其添加到Neftables(C-)功能中,而HTS则可以添加HTS HTS。整个系统的损失。在第一阶段,我们将嵌入多孔HTS电缆中的SFM护套中,以便减少或实际上消除了同轴电缆伴随作用所产生的磁化损失,而无需拥有进一步的HTS盾牌,这也可以用作额外的电力损失来源。已经证明了类似的元结构来增强HTS电缆的机械性能,但是其用于不同超导和铁磁复合材料的电磁行为及其在三相或直流多导体构型下的整体性能尚不清楚。我们旨在研究HTS/SFM暖导体的不同磁性鞘,以用于SFM的实际商业市场用于电源应用。从这个意义上讲,33种不同的SFM材料,其相对磁渗透性范围从〜1到35000不等,将被视为该项目的一部分,从而导致世界上第一张单相HTS/SFM传输线的AC-MAP。 This will be then extended to triaxial and triad designs of warm and cold dielectric transmission lines, finding the best route of investment for this technology with a significant cost reduction and efficiency gain as the primary targets.The research proposed in this project is the first of its kind on the search of energy-efficient and resilient transmission networks, which in the long term aims to mitigate costs of grid reinforcement, replacement and upgrade of fault limiters and other power management devices,随着公众接受和降低安装成本的水平,由于它们减少了在人口稠密的地区使用权利的需求。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electromagnetic analysis and AC losses of triaxial cables with multiple 2G-HTS layers per phase
每相具有多个 2G-HTS 层的三轴电缆的电磁分析和交流损耗
  • DOI:
    10.1016/j.supcon.2023.100039
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Clegg M
  • 通讯作者:
    Clegg M
Computational Modelling of Russia's First 2G-HTS Triaxial Cable
俄罗斯第一条 2G-HTS 三轴电缆的计算建模
Impact of the Magneto Angular Dependence of the Critical Current Density in CORC Cables
CORC 电缆中临界电流密度的磁角依赖性的影响
3D FEM Modelling of CORC Commercial Cables with Bean's like magnetization currents and its AC-Losses Behaviour
具有 Bean 类磁化电流的 CORC 商用电缆的 3D FEM 建模及其交流损耗行为
  • DOI:
    10.48550/arxiv.2201.07641
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fareed M
  • 通讯作者:
    Fareed M
Critical State Theory For The Magnetic Coupling Between Soft Ferromagnetic Materials And Type-II Superconductors
软铁磁材料与II型超导体磁耦合的临界态理论
  • DOI:
    10.48550/arxiv.2109.02604
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Fareed M
  • 通讯作者:
    Fareed M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

HAROLD RUIZ RONDAN其他文献

HAROLD RUIZ RONDAN的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

超快激光操控反铁磁材料自旋动力学的第一性原理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超快激光操控反铁磁材料自旋动力学的第一性原理研究
  • 批准号:
    12204069
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
反铁磁结构材料的超快自旋动力学研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
高居里温度铁磁二维材料的超原子构筑与磁性调控研究
  • 批准号:
    11974277
  • 批准年份:
    2019
  • 资助金额:
    63 万元
  • 项目类别:
    面上项目
铁磁金属/钡铁氧体复合吸波材料的双负电磁参数调控
  • 批准号:
    51601105
  • 批准年份:
    2016
  • 资助金额:
    17.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Superconducting Ferromagnetic Metamaterials Enabling the Development of Resilient High Voltage / High Current Transmission Systems
超导铁磁超材料促进弹性高压/大电流传输系统的开发
  • 批准号:
    2438289
  • 财政年份:
    2020
  • 资助金额:
    $ 30.95万
  • 项目类别:
    Studentship
Investigation of unconventional superconducting phenomena induced in ferromagnetic semiconductors
研究铁磁半导体中诱发的非常规超导现象
  • 批准号:
    17K05492
  • 财政年份:
    2017
  • 资助金额:
    $ 30.95万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Generation, Imaging and Control of Novel Coherent Electronic States in Artificial Ferromagnetic-Superconducting Hybrid Metamaterials and Devices
人造铁磁-超导混合超材料和器件中新型相干电子态的生成、成像和控制
  • 批准号:
    EP/J010626/1
  • 财政年份:
    2012
  • 资助金额:
    $ 30.95万
  • 项目类别:
    Research Grant
Generation, Imaging and Control of Novel Coherent Electronic States in Artificial Ferromagnetic-Superconducting Hybrid Metamaterials and Devices
人造铁磁-超导混合超材料和器件中新型相干电子态的生成、成像和控制
  • 批准号:
    EP/J01060X/1
  • 财政年份:
    2012
  • 资助金额:
    $ 30.95万
  • 项目类别:
    Research Grant
Generation, Imaging and Control of Novel Coherent Electronic States in Artificial Ferromagnetic-Superconducting Hybrid Metamaterials and Devices
人造铁磁-超导混合超材料和器件中新型相干电子态的生成、成像和控制
  • 批准号:
    EP/J010618/1
  • 财政年份:
    2012
  • 资助金额:
    $ 30.95万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了