Polarisation Entangled Photon Emitter

偏振纠缠光子发射器

基本信息

  • 批准号:
    EP/R043299/1
  • 负责人:
  • 金额:
    $ 18.3万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Quantum technologies will transform and improve crucial aspects of our life. To name a few, they will protect our privacy, and secure digital communications from any cyber attack, push the speed of computers to new levels, enable imaging the faintest objects, with applications to security and healthcare.While few of these outcomes are moving towards commercialisation, such as quantum-secured communications, others are still far from being a robust technology. The UK government has invested substantial resources in promoting the translation of the science available in academic institutions into technologies for the benefit of the public. For this quantum revolution to happen, we need to combine the know-how available in the academia, the technical capabilities of our high-tech companies, and the feedback from potential users of the technology.With this proposal, we are following this receipt, targeting the development of the first commercial source of visible, entangled photons, suitable for applications ranging from secure communication to metrology. Entangled light is the key to unlock the possibilities offered by quantum mechanics, and is the starting point for many applications, such quantum-key distribution and quantum computing. The components required to build an entangled light source are a laser and a suitable crystal that converts the laser light into entangled photons. Chromacity is a UK leader in the market of laser systems while Covesion is a world leader in the supply of crystals for the generation of entangled photons. We propose therefore to partner with these companies bringing our know-how in quantum optics. The University of Glasgow is indeed a leading institution in the UK, and the world, for what concern quantum optics and quantum technologies. Together, we have the production capabilities, the engineering skills, and the supply chain, to bring a visible source of entangled photons on the market. The role of the academic team in this project is twofold. On the one hand, we shall guide the design of the optical components required to generate the entangled states, starting from the technology provided by the two partner companies. We shall exploit our experience in the generation of entangled states in a lab to inform the two companies on the best choice of the nonlinear crystals parameters, the geometry of the laser interaction with the nonlinear elements, and on the proper measurement procedure required to quantify the level of entanglement achieved. This will be, therefore, a knowledge transfer action, aimed at bringing the academic know-how into a commercial reality. On the other hand, we will test the results produced by the joint work of Chromacity and Covesion. In this scenario, the University of Glasgow team will be the beta-tester. We are indeed end-users in the potential quantum-optical market since most of our research requires entangled states to be carried on. We shall, therefore, provide our feedback to the companies, concerning performances, packaging and user-friendliness. As the research in quantum optics becomes increasingly common in academia, a growing number of researchers will look for "plug and play" sources of entangled states.
量子技术将改变和改善我们生活的关键方面。仅举几例,它们将保护我们的隐私,并确保数字通信免受任何网络攻击,将计算机的速度提升到新的水平,使最微弱的物体成像,并应用于安全和医疗保健。虽然这些成果中很少有正在朝着商业化,例如量子安全通信,其他技术还远未成为一项强大的技术。英国政府投入了大量资源来促进将学术机构现有的科学成果转化为造福公众的技术。为了发生这场量子革命,我们需要结合学术界现有的专业知识、我们高科技公司的技术能力以及该技术潜在用户的反馈。通过这项建议,我们将遵循此收据,目标是开发第一个商业可见纠缠光子源,适用于从安全通信到计量等各种应用。纠缠光是解锁量子力学提供的可能性的关键,也是许多应用的起点,例如量子密钥分发和量子计算。构建纠缠光源所需的组件是激光器和将激光转换为纠缠光子的合适晶体。 Chromacity 是英国激光系统市场的领导者,而 Covesion 是用于产生纠缠光子的晶体供应的世界领导者。因此,我们建议与这些公司合作,带来我们在量子光学方面的专业知识。格拉斯哥大学在量子光学和量子技术方面确实是英国乃至世界的领先机构。我们共同拥有生产能力、工程技术和供应链,可以将可见的纠缠光子源推向市场。学术团队在该项目中的作用是双重的。一方面,我们将从两家合作公司提供的技术出发,指导产生纠缠态所需的光学元件的设计。我们将利用我们在实验室中生成纠缠态的经验,向两家公司通报非线性晶体参数的最佳选择、激光与非线性元件相互作用的几何形状,以及量化纠缠态所需的正确测量程序。达到的纠缠程度。因此,这将是一项知识转移行动,旨在将学术知识转化为商业现实。另一方面,我们将测试 Chromacity 和 Covesion 联合工作产生的结果。在这种情况下,格拉斯哥大学团队将担任 Beta 测试者。我们确实是潜在量子光学市场的最终用户,因为我们的大部分研究都需要纠缠态进行。因此,我们将向公司提供有关性能、包装和用户友好性的反馈。随着量子光学研究在学术界变得越来越普遍,越来越多的研究人员将寻找“即插即用”的纠缠态来源。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Terahertz control of air lasing
  • DOI:
    10.1103/physreva.99.053802
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    M. Clerici;A. Bruhacs;D. Faccio;M. Peccianti;M. Spanner;A. Markov;B. Schmidt;T. Ozaki;F. Légaré-F.-Lé
  • 通讯作者:
    M. Clerici;A. Bruhacs;D. Faccio;M. Peccianti;M. Spanner;A. Markov;B. Schmidt;T. Ozaki;F. Légaré-F.-Lé
Visible entangled photons from an ultrafast fiber laser source
来自超快光纤激光源的可见纠缠光子
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Leburn C.
  • 通讯作者:
    Leburn C.
Degenerate optical nonlinear enhancement in epsilon-near-zero transparent conducting oxides
  • DOI:
    10.1364/ome.8.003392
  • 发表时间:
    2018-11-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Carnemolla, Enrico Giuseppe;Caspani, Lucia;Ferrera, Marcello
  • 通讯作者:
    Ferrera, Marcello
Second-harmonic generation in AlGaAs-on-insulator waveguides
  • DOI:
    10.1364/ol.44.001339
  • 发表时间:
    2019-03-15
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    May, Stuart;Kues, Michael;Sorel, Marc
  • 通讯作者:
    Sorel, Marc
Invited Article: Ultra-broadband terahertz coherent detection via a silicon nitride-based deep sub-wavelength metallic slit
  • DOI:
    10.1063/1.5052628
  • 发表时间:
    2018-11
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    A. Tomasino;R. Piccoli;Y. Jestin;Sebastien Delprat;M. Chaker;M. Peccianti;M. Clerici;A. Busacca;L. Razzari;R. Morandotti
  • 通讯作者:
    A. Tomasino;R. Piccoli;Y. Jestin;Sebastien Delprat;M. Chaker;M. Peccianti;M. Clerici;A. Busacca;L. Razzari;R. Morandotti
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Matteo Clerici其他文献

プラズモン増強を用いた表面光化学反応
利用等离子体增强的表面光化学反应
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    野澤 翔、上野 貢生、三澤 弘明、Anna Mazhorova;Matteo Clerici;Luca Razzari;Roberto Morandotti;K. Ueno;上野貢生
  • 通讯作者:
    上野貢生
テラヘルツ帯域における光アンテナ構造の分光特性
太赫兹波段光学天线结构的光谱特性
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    野澤 翔、上野 貢生、三澤 弘明、Anna Mazhorova;Matteo Clerici;Luca Razzari;Roberto Morandotti
  • 通讯作者:
    Roberto Morandotti
Plasmonic chemistry and its application to nanolithography and infrared sensor
等离子体化学及其在纳米光刻和红外传感器中的应用
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    野澤 翔、上野 貢生、三澤 弘明、Anna Mazhorova;Matteo Clerici;Luca Razzari;Roberto Morandotti;K. Ueno;上野貢生;上野貢生;K. Ueno
  • 通讯作者:
    K. Ueno
Space-time focusing of Bessel-like pulses.
类贝塞尔脉冲的时空聚焦。
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Matteo Clerici;D. Faccio;E. Rubino;A. Lotti;A. Couairon;P. Trapani
  • 通讯作者:
    P. Trapani
Fabrication and characterization of metallic nanostructures with single nanometer-sized gap
具有单纳米级间隙的金属纳米结构的制备和表征
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    野澤 翔、上野 貢生、三澤 弘明、Anna Mazhorova;Matteo Clerici;Luca Razzari;Roberto Morandotti;K. Ueno
  • 通讯作者:
    K. Ueno

Matteo Clerici的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Matteo Clerici', 18)}}的其他基金

Quantum-enhanced THz spectroscopy and imaging
量子增强太赫兹光谱和成像
  • 批准号:
    EP/P009697/1
  • 财政年份:
    2017
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Research Grant

相似国自然基金

基于单分子微纳调控的片上全同光子源及纠缠量子逻辑门
  • 批准号:
    12374349
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
拓扑光波导阵列中纠缠双光子的产生与调控
  • 批准号:
    12304394
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
反聚束光子关联/纠缠态研究
  • 批准号:
    12364047
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
基于光子轨道角动量的纠缠表征、干涉和交换研究
  • 批准号:
    12304359
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
非厄米光子晶格中多体边缘输运与拓扑纠缠分发研究
  • 批准号:
    12304557
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Generation and control of multi-photon quantum entangled states by pre-post selection
通过前后选择产生和控制多光子量子纠缠态
  • 批准号:
    22KJ1874
  • 财政年份:
    2023
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
On-demand single and entangled photon emitter with quantum optical nonlinear effects
具有量子光学非线性效应的按需单光子和纠缠光子发射器
  • 批准号:
    23H01792
  • 财政年份:
    2023
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Overcoming photosensitivity limits and unlocking unprecedented quantum control using entangled two-photon absorption spectroscopy
使用纠缠双光子吸收光谱克服光敏性限制并解锁前所未有的量子控制
  • 批准号:
    566599-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Vanier Canada Graduate Scholarship Tri-Council - Doctoral 3 years
Realization of an entangled photon-pair emitting device using silicon carbide semiconductor
使用碳化硅半导体实现纠缠光子对发射器件
  • 批准号:
    22K18292
  • 财政年份:
    2022
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Pioneering)
Next-Generation Satellite Telecommunications Entangled Photon Source (NextSTEPS)
下一代卫星通信纠缠光子源 (NextSTEPS)
  • 批准号:
    10031944
  • 财政年份:
    2022
  • 资助金额:
    $ 18.3万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了