CatPlasKin: The microkinetics of non-thermal plasma-assisted heterogeneous catalysis with application to the non-oxidative coupling of methane

CatPlasKin:非热等离子体辅助多相催化的微动力学及其在甲烷非氧化偶联中的应用

基本信息

  • 批准号:
    EP/R031800/1
  • 负责人:
  • 金额:
    $ 14.36万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Methane is an abundant material that presents huge potential as a feedstock for chemicals synthesis. It is widely available as the major constituent of natural gas, but becomes also increasingly more obtainable from sustainable sources, such as biogas and landfill gas, and unconventional sources, such as shale gas, coalbed methane and methane hydrates. Moreover, it has more than 25 times higher 100-year global warming potential to that of CO2, so the need to develop efficient methane utilization methods towards value-added products is more than clear.Among many uses, methane has been identified as a very promising raw material for the production of ethylene. The latter is the most widely produced base chemical, used e.g. for polymers, but its production depends on crude oil, generating the vast majority of CO2 process emissions in the UK chemical industry. In fact, under the Kyoto Protocol and the UK Climate Change Act, UK has specific international and domestic targets for reducing greenhouse gas emissions. 11% of these are represented by methane originating from agriculture, waste management and the energy industry, hence the production of ethylene from methane can be a promising process with multiple benefits for these sectors.The high temperatures needed, though, for the activation of the stable methane molecule via thermal-catalysis, in conjunction with the use of oxidants to facilitate thermodynamically favourable routes, result in significant amounts of undesired carbon oxide by-products in the currently applied upgrading methods.The combination of non-thermal plasma with catalysis has recently emerged as a promising technology to enable catalysts to operate at low temperatures. In non-thermal plasmas, the overall gas temperature is as low as ambient, however electrons are highly energetic resulting in collisions that easily break down molecule bonds, producing various reactive species like free radicals, excited states and ions that participate in subsequent reactions. The strong non-equilibrium character of these plasmas has been shown to even allow thermodynamically unfavourable reactions to occur under ambient conditions.Being able to carry out direct methane coupling towards ethylene at low temperatures at non-oxidative conditions would present significant benefits, ranging from carbon oxides-free products to drastically reduced energy requirements and would enable alternate production routes towards polymers and high octane-number fuels. Combining the high reactivity of plasma with the high selectivity of the catalytic surface has a huge potential to unravel these benefits, which can further be enhanced by the use of sustainable electricity for the generation of the plasma.Nonetheless, the interaction between non-thermal plasma and catalysts is a highly complex phenomenon. There has been a considerable amount of experimental work aimed at understanding the underlying elementary processes, however most mechanistic details are not yet elucidated. The combination of experimental, theoretical and modelling studies is needed to gain a more fundamental insight.Microkinetic modelling is proposed as a novel approach to enhance the understanding and enable the optimisation of plasma-assisted heterogeneous catalytic reaction systems. With support from BASF, UK and a carefully designed experimental program, the novelty of the proposed project lies on the, for the first time, systematic consideration of all elementary reaction processes taking place in the plasma phase and on the catalyst surface and the explicit description of the interactions among them. The project is very timely, addressing topics in EPSRC's portfolio in relation to energy efficiency and alternative fuels and sources of chemicals. Successful implementation will result in the development of predictive computational tools that can be used to accelerate the design of new processes, reducing the needs for experimentation and associated costs.
甲烷是一种丰富的材料,它作为化学物质合成的原料具有巨大的潜力。它被广泛作为天然气的主要组成部分,但也越来越可以从可持续来源(例如沼气和垃圾填埋气)以及非常规的来源获得,例如页岩气,煤层甲烷和甲烷水合物。此外,它具有超过100年的全球变暖潜力的25倍以上,因此,将有效的甲烷利用方法用于增值产品的需求远远超过了。在许多用途中,甲烷已被确定为乙烯生产的非常有希望的生产物。后者是使用的最广泛生产的基础化学物质,例如对于聚合物而言,其产量取决于原油,这产生了英国化学工业的绝大多数CO2工艺排放。实际上,根据《京都议定书》和《英国气候变化法》,英国具有减少温室气体排放的特定国际和国内目标。其中11%是由甲烷源自农业,废物管理和能源工业的代表,因此甲烷的乙烯产生可能是一个有希望的过程,对于这些领域而言,具有多个好处。但是,对于稳定的甲烷分子而激活的高温是通过热催化的稳定量,以相结合的氧化能力,以相结合的氧化能力,以使氧化型偶然地构成有利的氧化型,以偶然的氧化能力,以有利的氧化能力范围内的氧化型,并且是有益的氧化型。当前应用升级方法中的氧化物副产品。非热等离子体与催化的结合最近已成为一种有前途的技术,可以使催化剂能够在低温下运行。在非热等离子体中,总体气体温度与环境一样低,但是电子具有很高的能量性,导致碰撞易于分解分子键,从而产生各种反应性物种,例如自由基,激发态和参与后续反应的离子。这些等离子体的强大非平衡特征甚至可以使热力学不利的反应在环境条件下发生。能够在低温下在低温条件下在低温下向乙烯进行直接甲烷偶联,从而带来显着的好处,从无碳氧化物产生无碳氧化物的能源需求需求和替代型生产中,越来越高。将血浆的高反应性与催化表面的高选择性结合起来具有巨大的潜力来揭示这些益处,可以通过将可持续电力利用可持续的电力来增强血浆的产生。尽管如此,非热血浆和催化剂之间的相互作用是一种非常复杂的现象。有大量的实验性工作旨在了解基本的基本过程,但是大多数机械细节尚未阐明。需要实验,理论和建模研究的结合以获得更基本的见解。Microkinetic建模被认为是一种增强理解并能够优化血浆辅助异质性催化反应系统的新方法。在BASF,UK和一个经过精心设计的实验计划的支持下,提议的项目的新颖性在于首次系统地考虑在血浆阶段和催化剂表面以及对它们之间相互作用的明确描述中进行的所有基本反应过程。该项目非常及时,解决了EPSRC投资组合中有关能源效率以及替代性燃料和化学物质来源的主题。成功实施将导致预测计算工具的开发,这些工具可用于加速新过程的设计,从而减少实验和相关成本的需求。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating the effects of helium, argon and hydrogen co-feeding on the non-oxidative coupling of methane in a dielectric barrier discharge reactor
  • DOI:
    10.1016/j.ces.2022.117731
  • 发表时间:
    2022-05
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    P. Maitre;J. Long;M. Bieniek;M. N. Bannerman;P. Kechagiopoulos
  • 通讯作者:
    P. Maitre;J. Long;M. Bieniek;M. N. Bannerman;P. Kechagiopoulos
Plasma-enhanced catalysis for the upgrading of methane: a review of modelling and simulation methods
  • DOI:
    10.1039/d0re00024h
  • 发表时间:
    2020-05
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    P. Maitre;M. Bieniek;P. Kechagiopoulos
  • 通讯作者:
    P. Maitre;M. Bieniek;P. Kechagiopoulos
Plasma-Catalysis of Nonoxidative Methane Coupling: A Dynamic Investigation of Plasma and Surface Microkinetics over Ni(111).
  • DOI:
    10.1021/acs.jpcc.2c03503
  • 发表时间:
    2022-12-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Maitre, Pierre-Andre;Bieniek, Matthew S.;Kechagiopoulos, Panagiotis N.
  • 通讯作者:
    Kechagiopoulos, Panagiotis N.
Modelling excited species and their role on kinetic pathways in the non-oxidative coupling of methane by dielectric barrier discharge
  • DOI:
    10.1016/j.ces.2020.116399
  • 发表时间:
    2021-04
  • 期刊:
  • 影响因子:
    4.7
  • 作者:
    P. Maitre;M. Bieniek;P. Kechagiopoulos
  • 通讯作者:
    P. Maitre;M. Bieniek;P. Kechagiopoulos
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Panagiotis Kechagiopoulos其他文献

Panagiotis Kechagiopoulos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了