Single-Molecule Plasmoelectronics

单分子等离子体电子学

基本信息

  • 批准号:
    EP/M029522/1
  • 负责人:
  • 金额:
    $ 56.67万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Continuing miniaturization of electronic components in computer chips will eventually lead to component sizes on the molecular scale. Conventional semiconductor nanostructures at these length scales will suffer from increased leakage currents due to tunnelling as well as increased thermal effects due to higher power densities. The need for developing alternative approaches has created over the last two decades the field of molecular electronics, in which electronic components are realized using single molecules. Numerous examples of prototypical devices such as diodes, memory elements and transistors employing individual molecules have been demonstrated.One of the most important functions is the control of the current through a device with an external stimulus, i.e. gating. Stimuli which have been employed include electrostatic and electrochemical potentials, temperature, and light. Light is one of the most attractive options since it potentially allows coupling single-molecular devices with future optoelectronic circuitry, holding the promise of ultimate speed and miniaturization. Efficient coupling of light with nanoscale objects can be achieved using plasmonic nanostructures that concentrate and focus light beyond the diffraction limit. In combination with electronic devices one speaks of plasmoelectronics. Such efficient and spatially confined coupling is a pre-requisite for the tight integration of optically gate-able molecular devices on the sub-100 nm scale. The proposed research aims at realizing single-molecular plasmoelectronic devices in which the current through a single molecule coupled to a plasmonic nanostructure is gated by external illumination. The envisaged device structures will take advantage of the plasmonic properties of noble metal nanoparticles that serve as the electrodes of the single-molecule junction. This research will open new opportunities for miniaturization, integration, and control of optoelectronic devices to the single-molecule level.The research is interdisciplinary spanning physics, chemistry, molecular electronics and plasmonics. This is reflected in the research team which brings together expertise in organic synthesis of single-molecular conductors (Beeby, Durham), single-molecule conduction measurements (Nichols, Higgins, Liverpool), and nanoplasmonics (Jaeckel, Liverpool). This broad expertise will allow for a systematic approach varying the chemical nature of the molecular conductor and matching it with the plasmonic properties of the single-molecule junction. This will allow detailed characterization of parameters such as spectral overlap and electronic coupling in the junction and their relation to the optical gating effect in the device. The single-molecule approach will eliminate both ensemble averaging effects which can mask important effects in macroscopic measurements and sample heterogeneity which makes interpretation of results more complex. The project will deliver a fundamental understanding of plasmoelectronic single-molecule junctions and formulate design rules for future devices. The results will also open new opportunities in related research areas such photovoltaics, organic electronics, and catalysis.
计算机芯片中电子元件的不断小型化最终将导致元件尺寸达到分子级别。这些长度尺度的传统半导体纳米结构将因隧道效应而增加漏电流,并因更高的功率密度而增加热效应。在过去的二十年中,对开发替代方法的需求催生了分子电子学领域,其中电子元件是使用单分子实现的。已经展示了许多采用单个分子的原型器件的例子,例如二极管、存储元件和晶体管。最重要的功能之一是通过外部刺激(即门控)控制通过器件的电流。所采用的刺激包括静电和电化学势、温度和光。光是最有吸引力的选择之一,因为它有可能允许将单分子器件与未来的光电电路耦合,并有望实现终极速度和小型化。使用等离子体纳米结构可以实现光与纳米级物体的有效耦合,这些纳米结构可以将光集中并聚焦到衍射极限之外。与电子设备结合起来就是等离子体电子学。这种高效且空间受限的耦合是亚 100 nm 尺度光学门控分子器件紧密集成的先决条件。拟议的研究旨在实现单分子等离子体电子器件,其中通过耦合到等离子体纳米结构的单分子的电流由外部照明控制。设想的器件结构将利用贵金属纳米颗粒的等离子体特性,作为单分子结的电极。这项研究将为光电器件的小型化、集成和单分子水平控制开辟新的机遇。这项研究是跨学科的,跨越物理、化学、分子电子学和等离子体激元学。这反映在研究团队中,该团队汇集了单分子导体有机合成(Beeby、Durham)、单分子传导测量(Nichols、Higgins、Liverpool)和纳米等离子体(Jaeckel、Liverpool)方面的专业知识。这种广泛的专业知识将允许采用系统的方法来改变分子导体的化学性质,并将其与单分子结的等离子体特性相匹配。这将允许对参数进行详细表征,例如结中的光谱重叠和电子耦合及其与器件中的光选通效应的关系。单分子方法将消除整体平均效应(它可能掩盖宏观测量中的重要效应)和样本异质性(这使得结果的解释更加复杂)。该项目将提供对等离子电子单分子结的基本了解,并为未来设备制定设计规则。研究结果还将为光伏、有机电子和催化等相关研究领域带来新的机遇。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Low variability of single-molecule conductance assisted by bulky metal-molecule contacts
大体积金属分子接触辅助单分子电导的低变异性
  • DOI:
    http://dx.10.1039/c6ra15477h
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Ferradás R
  • 通讯作者:
    Ferradás R
Experimental and Computational Studies of the Single-Molecule Conductance of Ru(II) and Pt(II) trans -Bis(acetylide) Complexes
Ru(II) 和 Pt(II) 反式双乙炔络合物单分子电导的实验和计算研究
  • DOI:
    http://dx.10.1021/acs.organomet.6b00472
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Al
  • 通讯作者:
    Al
Hemilabile Ligands as Mechanosensitive Electrode Contacts for Molecular Electronics.
半不稳定配体作为分子电子学的机械敏感电极触点。
Unconventional Single-Molecule Conductance Behavior for a New Heterocyclic Anchoring Group: Pyrazolyl.
新杂环锚定基团的非常规单分子电导行为:吡唑基。
Conductance of 'bare-bones' tripodal molecular wires.
“简单”三足分子线的电导。
  • DOI:
    http://dx.10.1039/c8ra01257a
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Davidson RJ
  • 通讯作者:
    Davidson RJ
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Richard Nichols其他文献

Processes at nanoelectrodes: general discussion
  • DOI:
    10.1039/c8fd90024h
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Hassan Alzahrani;Christophe Antoine;Koichi Aoki;Lane Baker;Sebastien Balme;Cameron Bentley;Gourav Bhattacharya;Paul W. Bohn;Qiong Cai;Chan Cao;Daniel Commandeur;Richard M. Crooks;Martin Edwards;Andrew Ewing;Kaiyu Fu;Alina Galeyeva;Rui Gao;Thom Hersbach;Robert Hillman;Yong-Xu Hu;Lei Jiang;Frederic Kanoufi;Christine Kranz;Shaochuang Liu;Tobias Löffler;Yitao Long;Julie MacPherson;Kim McKelvey;Shelley Minteer;Michael Mirkin;Andrew Mount;Richard Nichols;Wojciech Nogala;Denis Öhl;Kaipei Qiu;Hang Ren;Jennifer Rudd;Wolfgang Schuhmann;Zuzanna Siwy;Zhongqun Tian;Patrick Unwin;Yixian Wang;Patrick Wilde;Yanfang Wu;Zhugen Yang;Yilun Ying
  • 通讯作者:
    Yilun Ying
From single cells to single molecules: general discussion
  • DOI:
    10.1039/c6fd90066f
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Justin Gooding;Olaf Magnussen;David Fermin;Richard Crooks;Frederic Kanoufi;Wolfgang Schuhmann;Richard Nichols;Wolfgang Schmickler;Nongjian Tao;Shengli Chen;Paolo Actis;Ashley Page;Kristina Tschulik;Sanli Faez;Martin Edwards;Robert Johnson;Wojciech Nogala;Christine Kranz;Michael Eikerling;Patrick Unwin;Bradley Thomas;Venkateshkumar Prabhakaran;Jan Clausmeyer;Kylie Vincent;Marc Koper;Zhongqun Tian;Andy Mount;Mario A. Alpuche-Aviles;Henry White;Andrew Ewing;Simon Higgins;Lane Baker;Dongping Zhan;Jens Ulstrup;Paul W. Bohn;Serge Lemay
  • 通讯作者:
    Serge Lemay
Reactions at the nanoscale: general discussion
  • DOI:
    10.1039/c6fd90067d
  • 发表时间:
    2016-11
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Thom Hersbach;Julie MacPherson;Olaf Magnussen;Richard Crooks;Simon Higgins;David Fermin;Frederic Kanoufi;Wolfgang Schuhmann;Richard Nichols;Sushanta Mitra;Wolfgang Schmickler;Kristina Tschulik;Philip Bartlett;Sanli Faez;Wojciech Nogala;Michael Eikerling;Christine Kranz;Patrick Unwin;Marc Koper;Serge Lemay;Andrew Mount;Andrew Ewing;Zhongqun Tian;Henry White;Shengli Chen;Jan Clausmeyer;Katharina Krischer
  • 通讯作者:
    Katharina Krischer
Processes at nanopores and bio-nanointerfaces: general discussion
  • DOI:
    10.1039/c8fd90023j
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Hassan Alzahrani;Christophe Antoine;Lane Baker;Sebastien Balme;Gourav Bhattacharya;Paul W. Bohn;Qiong Cai;Chrys Chikere;Richard M. Crooks;Naren Das;Martin Edwards;Cyril Ehi-Eromosele;Niklas Ermann;Lei Jiang;Frederic Kanoufi;Christine Kranz;Yitao Long;Julie MacPherson;Kim McKelvey;Michael Mirkin;Richard Nichols;Wojciech Nogala;Juan Pelta;Hang Ren;Jennifer Rudd;Wolfgang Schuhmann;Zuzanna Siwy;Zhongqun Tian;Patrick Unwin;Liping Wen;Henry White;Katherine Willets;Yanfang Wu;Yilun Ying
  • 通讯作者:
    Yilun Ying
Energy conversion at nanointerfaces: general discussion
  • DOI:
    10.1039/c8fd90025f
  • 发表时间:
    2018-09
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Hassan Alzahrani;Cameron Bentley;Paul W. Bohn;Chrys Chikere;Daniel Commandeur;Richard M. Crooks;Cyril Ehi-Eromosele;Andrew Ewing;Alina Galeyeva;Thom Hersbach;Robert Hillman;Frederic Kanoufi;Marc Koper;Christine Kranz;Tobias Löffler;Yitao Long;Julie MacPherson;Kim McKelvey;Shelley Minteer;Michael Mirkin;Richard Nichols;Wojciech Nogala;Denis Öhl;Juan Pelta;Hang Ren;Jennifer Rudd;Wolfgang Schuhmann;Zhongqun Tian;Patrick Unwin;Andrea Vezzoli;Katherin Willets;Yanfang Wu;Zhugen Yang;Dongping Zhan;Chuan Zhao
  • 通讯作者:
    Chuan Zhao

Richard Nichols的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Richard Nichols', 18)}}的其他基金

Supramolecular Nanorings for Exploring Quantum Interference
用于探索量子干涉的超分子纳米环
  • 批准号:
    EP/M014169/1
  • 财政年份:
    2015
  • 资助金额:
    $ 56.67万
  • 项目类别:
    Research Grant
Identifying the genetic mechanisms facilitating host range and virulence of a viral pathogen that threatens European amphibian biodiversity
确定威胁欧洲两栖动物生物多样性的病毒病原体的宿主范围和毒力的遗传机制
  • 批准号:
    NE/M00080X/1
  • 财政年份:
    2015
  • 资助金额:
    $ 56.67万
  • 项目类别:
    Research Grant
Single-molecule photo-spintronics
单分子光自旋电子学
  • 批准号:
    EP/M005046/1
  • 财政年份:
    2014
  • 资助金额:
    $ 56.67万
  • 项目类别:
    Research Grant
Electrochemically Gated Single Molecule FETs
电化学门控单分子 FET
  • 批准号:
    EP/K007785/1
  • 财政年份:
    2013
  • 资助金额:
    $ 56.67万
  • 项目类别:
    Research Grant
In-situ Electrochemical Fabrication of Single Molecule Spintronic Junctions
单分子自旋电子结的原位电化学制造
  • 批准号:
    EP/H001980/1
  • 财政年份:
    2010
  • 资助金额:
    $ 56.67万
  • 项目类别:
    Research Grant
Porphyrin single molecule wires for nanoelectronics
用于纳米电子学的卟啉单分子线
  • 批准号:
    EP/D07665X/1
  • 财政年份:
    2006
  • 资助金额:
    $ 56.67万
  • 项目类别:
    Research Grant
Single Molecule Spintronics
单分子自旋电子学
  • 批准号:
    EP/D035678/1
  • 财政年份:
    2006
  • 资助金额:
    $ 56.67万
  • 项目类别:
    Research Grant

相似国自然基金

肿瘤细胞外囊泡ETV4活化间质微环境CAFs促进胰腺癌侵袭转移的分子机理及精准诊疗标志物研究
  • 批准号:
    82303419
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
转运蛋白SmABCG1介导丹参酮类成分细胞外排的分子机制研究
  • 批准号:
    82304662
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
鼻腔共生表皮葡萄球菌通过抗菌肽-moDC-CCL17通路抑制过敏性鼻炎的分子机制
  • 批准号:
    82302595
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
胰岛再生来源蛋白促进胰腺癌神经支配的作用与分子机制
  • 批准号:
    82372879
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
振荡剪切应力通过ICAM5介导巨噬细胞活化导致主动脉夹层形成的分子机制
  • 批准号:
    82300540
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Dissecting ribosome pausing during embryogenesis: from global and single molecule studies to whole embryo phenotypes
剖析胚胎发生过程中的核糖体暂停:从整体和单分子研究到整个胚胎表型
  • 批准号:
    BB/X007294/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.67万
  • 项目类别:
    Research Grant
Shining light on single molecule dynamics: photon by photon
照亮单分子动力学:逐个光子
  • 批准号:
    EP/X031934/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.67万
  • 项目类别:
    Research Grant
Optimisation of small molecule inhibitors for effective targeting of phospholipase C gamma in T-cell lymphoma
优化小分子抑制剂以有效靶向 T 细胞淋巴瘤中的磷脂酶 C γ
  • 批准号:
    MR/Y503344/1
  • 财政年份:
    2024
  • 资助金额:
    $ 56.67万
  • 项目类别:
    Research Grant
多層オミクスを起点とした肝代謝異常と再生不全をつなぐ分子機序の解明
利用多层组学阐明肝脏代谢异常与再生衰竭之间的分子机制
  • 批准号:
    24K11068
  • 财政年份:
    2024
  • 资助金额:
    $ 56.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
1分子ロングリードシークエンス技術を用いたB型・C型肝炎ウイルス欠失変異体の解析
利用单分子长读长测序技术分析乙型和丙型肝炎病毒缺失突变体
  • 批准号:
    24K11109
  • 财政年份:
    2024
  • 资助金额:
    $ 56.67万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了