Low temperature ion-radical collisions
低温离子自由基碰撞
基本信息
- 批准号:EP/N004647/1
- 负责人:
- 金额:$ 76.43万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The chemistry of various gaseous environments is dominated by reactions involving transient, highly-reactive atomic and molecular species; these environments include the interstellar medium (ISM, principally very low density gas clouds between the stars) the upper atmosphere, flames and combustion systems, electric discharges and plasmas. The key highly-reactive species present are either free-radicals - atoms or molecules which generally have an odd number of electrons so that at least one electron is 'unpaired' - or ionic species carrying a positive electrical charge (cations). Such species have a natural tendency to form new chemical bonds, and typically reactions of these species have very low activation energies, or even zero activation energy. This means that they typically have very fast reactions even at low temperatures - indeed many reactions of these species become faster as the temperature lowers. In order to model the chemistry of the environments above (which may contain hundreds of different chemical species), we need to know how fast the reactions of these species are, and how those reaction rates vary with temperature. For the interstellar medium the temperatures are very low (10 - 50 Kelvin) whereas in flames and plasmas the temperature may be very high. Thus knowing the reaction rates at room temperature does not generally provide sufficient information for modelling purposes.In this work we will measure the rates of reactions between free-radical species and ionic species over wide temperature ranges (from above 300 Kelvin to below 1 Kelvin). There is currently a vast knowledge gap in terms of measuring rates for reactions between two transient species - most work has been done with one transient species and one stable species. The reason for the current dearth of information from laboratory measurements is that both of the transient species involved in the reaction tend to be present in very low concentrations, and therefore current methods lack the sensitivity to detect the occurrence of reactions - the number of reaction product molecules formed per second is likely to be undetectably low.To make these measurements we will assemble a unique instrument which consists of a 'Zeeman decelerator' for producing the free-radical species with variable kinetic energies (and hence variable temperatures), and a laser-cooled ion trap for producing the cold target ionic species for reaction. The Zeeman decelerator uses the fact that free-radical species are typically magnetic (as they have unpaired electrons) and so their velocities can be controlled using magnetic fields - in this case the fields are created by a linear sequence of 12-100 solenoid coils through which the radicals pass. By decelerating the radical species (H, N and O atoms, or CH3 and CN molecules) we can control their kinetic energy and hence the temperature. For the ionic species we use a radiofrequency quadrupole to trap the ions (which are produced by laser ionization of neutral precursors), and by using laser cooling we can create a low density cloud of atomic ions (Ca+ in this case). The ions condense to form a 'Coulomb crystal' in which the ions take up positions in a regular array and the temperature can be as low as a few milli-Kelvin The Ca+ ions are constantly fluorescing and can be observed individually by imaging microscopy. Molecular ions (in this case CH+, C2H2+, CO2+, or C6H6+) can then be co-condensed ('sympathetically cooled') into the Coulomb crystal and trapped there for periods of hours.In the experiments, radicals from the Zeeman decelerator interact with trapped ions, and reactions occur producing a new ionic chemical species, which is also trapped. Thus the reaction rate is determined by monitoring product ion formation versus time. The unique ability of our proposed experiment derives from a combination of the very long trapping time of the ions and the capability to observe even single ions in the trap.
各种气态环境的化学因素主要由涉及短暂性,高度反应性原子和分子物种的反应。这些环境包括星际培养基(ISM,恒星之间的密度非常低的密度气云),上层大气,火焰和燃烧系统,电气排放和等离子体。存在的主要高反应性物种是自由基的 - 原子或分子通常具有奇数的电子,因此至少一个电子是“不配对的” - 或带有阳性电荷(阳离子)的离子物种。这种物种具有形成新化学键的自然趋势,通常这些物种的反应具有非常低的激活能,甚至零活化能。这意味着即使在低温下,它们通常也具有非常快的反应 - 实际上,随着温度降低,这些物种的许多反应变得更快。为了模拟上述环境的化学性质(可能包含数百种不同的化学物种),我们需要知道这些物种的反应的速度以及这些反应的速度如何随温度变化。对于星际培养基,温度非常低(10-50 kelvin),而在火焰和等离子体中,温度可能非常高。因此,知道室温下的反应速率通常不会为建模目的提供足够的信息。在这项工作中,我们将在宽温度范围内衡量自由基物种和离子物种之间的反应速率(从300 kelvin以上的开kelvin到1凯文以下)。目前,在测量两个瞬态物种之间的反应率方面存在巨大的知识差距 - 大多数工作都是对一个瞬态物种和一种稳定物种完成的。当前从实验室测量中缺乏信息的原因是,反应所涉及的两个瞬时物种往往存在很低的浓度,因此目前的方法缺乏检测反应发生的敏感性 - 每秒形成的反应产物分子的数量可能是不可发现的,因此可以使这些测量范围供应范围。可变动能(因此温度可变)和激光冷却离子陷阱,用于产生冷靶离子物种进行反应。 Zeeman减速器使用这样一个事实,即自由基物种通常是磁性的(因为它们具有未配对的电子),因此可以使用磁场来控制其速度 - 在这种情况下,该场是由12-100螺线管线圈通过的线性序列创建的,而该磁管线圈通过其通过,而自由基通过。通过减速自由基物种(H,N和O原子,或CH3和CN分子),我们可以控制它们的动能,从而控制温度。对于离子物种,我们使用辐射频化四极杆来捕获离子(通过中性前体的激光电离产生),通过使用激光冷却,我们可以创建原子离子的低密度云(在这种情况下为Ca+)。离子凝结形成一个“库仑晶体”,其中离子在常规阵列中占据位置,并且温度可以低至几毫克的Ca+离子不断荧光,并且可以通过成像显微镜单独观察。然后可以将分子离子(在这种情况下为CH+,C2H2+,CO2+或C6H6+)共同传感(“交感神经冷却”)到库仑晶体中并将其捕获数小时。在实验中,从Zeeman减速器中的自由基与捕获的ies reactions相互作用。因此,反应速率是通过监测产物离子形成与时间来确定的。我们提出的实验的独特能力源于离子非常长的诱捕时间和观察陷阱中的单个离子的能力的组合。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
High-resolution room temperature and jet-cooled spectroscopic investigation of 15NH3 in the ?1+?3 band region (1.51 µm)
15NH3 在 ?1 ?3 带区 (1.51 µm) 的高分辨率室温和喷射冷却光谱研究
- DOI:10.1016/j.jqsrt.2016.03.018
- 发表时间:2016
- 期刊:
- 影响因子:2.3
- 作者:Földes T
- 通讯作者:Földes T
Cold ion chemistry within Coulomb crystals
- DOI:10.1080/00268976.2018.1564850
- 发表时间:2019-07-18
- 期刊:
- 影响因子:1.7
- 作者:Heazlewood, Brianna R.
- 通讯作者:Heazlewood, Brianna R.
Velocity-selected magnetic guiding of Zeeman-decelerated hydrogen atoms
塞曼减速氢原子的速度选择磁引导
- DOI:10.1140/epjd/e2015-60454-3
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Dulitz K
- 通讯作者:Dulitz K
Off-axis parabolic mirror relay microscope for experiments with ultra-cold matter.
用于超冷物质实验的离轴抛物面镜中继显微镜。
- DOI:10.1063/1.5123792
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Hejduk M
- 通讯作者:Hejduk M
A stand-alone magnetic guide for producing tuneable radical beams.
用于产生可调谐自由基束的独立磁导。
- DOI:10.1063/5.0020628
- 发表时间:2020
- 期刊:
- 影响因子:0
- 作者:Miossec C
- 通讯作者:Miossec C
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tim Softley其他文献
Tim Softley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tim Softley', 18)}}的其他基金
GCRF IAA NGO Data ESRC-2 University of Birmingham 2018
GCRF IAA 非政府组织数据 ESRC-2 伯明翰大学 2018
- 批准号:
ES/S501335/1 - 财政年份:2018
- 资助金额:
$ 76.43万 - 项目类别:
Research Grant
University of Birmingham - Capital Award in Support of Early Career Researchers
伯明翰大学 - 支持早期职业研究人员的资本奖
- 批准号:
EP/S017844/1 - 财政年份:2018
- 资助金额:
$ 76.43万 - 项目类别:
Research Grant
A Coordinated Infrastructure for NMR in the Physical and Life Sciences: A 1 GHz Spectrometer at Birmingham
物理和生命科学中 NMR 的协调基础设施:伯明翰的 1 GHz 光谱仪
- 批准号:
EP/R030030/1 - 财政年份:2018
- 资助金额:
$ 76.43万 - 项目类别:
Research Grant
Challenging different forms of bias in physical science and engineering research
挑战物理科学和工程研究中不同形式的偏见
- 批准号:
EP/S011927/1 - 财政年份:2018
- 资助金额:
$ 76.43万 - 项目类别:
Research Grant
BBSRC IAA University of Birmingham
BBSRC IAA 伯明翰大学
- 批准号:
BB/S506709/1 - 财政年份:2018
- 资助金额:
$ 76.43万 - 项目类别:
Research Grant
IF-IAA-ESRC-2 University of Birmingham 2017
IF-IAA-ESRC-2 伯明翰大学 2017
- 批准号:
ES/R501086/1 - 财政年份:2017
- 资助金额:
$ 76.43万 - 项目类别:
Research Grant
Core Capability for Chemistry Research at Oxford
牛津大学化学研究的核心能力
- 批准号:
EP/K039571/1 - 财政年份:2013
- 资助金额:
$ 76.43万 - 项目类别:
Research Grant
Deuterium fractionation in ultracold collisions using trapped molecular ions
使用捕获分子离子进行超冷碰撞中的氘分馏
- 批准号:
EP/I029109/1 - 财政年份:2011
- 资助金额:
$ 76.43万 - 项目类别:
Research Grant
Industrial CASE Account - Oxford 2010
工业 CASE 帐户 - 牛津 2010
- 批准号:
EP/I501592/1 - 财政年份:2010
- 资助金额:
$ 76.43万 - 项目类别:
Training Grant
相似国自然基金
离子液体泰勒锥纯离子发射流量上限及温度调控研究
- 批准号:12302356
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
燃烧等离子体中电磁电子温度梯度模湍流的理论与模拟研究
- 批准号:12375213
- 批准年份:2023
- 资助金额:53.00 万元
- 项目类别:面上项目
EAST托卡马克低碰撞率等离子体中带状流与电子温度梯度模湍流相互作用的实验研究
- 批准号:12305254
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
温度浓度互补式化学链剥离还原钴酸锂载体回收退役锂离子电池机理研究
- 批准号:52376136
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
非适宜环境温度致肺功能下降及温度敏感TRP离子通道在其中的作用和机制研究
- 批准号:82304086
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Observation of Atomic Tunneling Effect in Low-Energy Ion-Polar Molecule Reactions and Its Role
低能离子-极性分子反应中原子隧道效应的观察及其作用
- 批准号:
23H01233 - 财政年份:2023
- 资助金额:
$ 76.43万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Characterizing the impact of sugar-type and metal ion content on the Maillard reaction in low-temperature, acidic conditions
表征低温、酸性条件下糖类型和金属离子含量对美拉德反应的影响
- 批准号:
568808-2022 - 财政年份:2022
- 资助金额:
$ 76.43万 - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Thermal Performance & Low Temperature Degradation of Li-ion Batteries
热性能
- 批准号:
2439787 - 财政年份:2020
- 资助金额:
$ 76.43万 - 项目类别:
Studentship
Low Temperature Plasma Ion Source Electrode Optimisation and Performance Characterisation
低温等离子体离子源电极优化和性能表征
- 批准号:
106005 - 财政年份:2020
- 资助金额:
$ 76.43万 - 项目类别:
Collaborative R&D