Engineering Quantum Technology Systems on a Silicon Platform

在硅平台上设计量子技术系统

基本信息

  • 批准号:
    EP/N003225/1
  • 负责人:
  • 金额:
    $ 193.01万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

The vision of this project is to develop practical quantum technology for the accurate measurement of electrical currents and to develop high sensitivity detectors for gases such as carbon dioxide, methane (the gas used to heat homes) and carbon dioxide. Single electron transistors allow only one electron to travel through the device when switched on to form the electrical current. If the control gate is switched at a high frequency then the current through the device is simply the frequency times the charge on an electron and by counting the number of electrons, the current can be accurately measured. All such devices to date only work at low temperatures due to the small energy difference between the quantum states required for the transistor. I am proposing to make a single electron transistor which is far smaller than any previous reported device that will have large energies between the quantum states and operate at room temperature.Gas molecules absorb light at very specific wavelengths which in the mid-infrared part of the electromagnetic spectrum correspond to vibrational energy of the bonds which hold the atoms together to form the gas molecule. This provides a molecular fingerprint as each molecule only absorbs specific wavelengths which can therefore be used to identify the gas. Gas detectors already exist for carbon dioxide, carbon monoxide and methane gas by measuring the absorption of light at the molecular fingerprint wavelength but the sensitivity for small battery powered detectors in the home is at the level of parts per million. For many scientific, healthcare, industrial and security applications sensitivities require to be at least a thousand times better. To date systems for measuring at this accuracy are large, bulky and require large lasers. This proposal will use quantum technology to build a far smaller and cheaper chip scale gas detector with parts per billion sensitivity that could be integrated into mobile phones or used for battery power sensors.I am proposing to use the quantum nature of light to produce 2 individual packets of light called photons which will be at the same wavelength and at the same phase where the peaks and troughs of the waves are at the same points in space as the light travels through a waveguide. Heisenburg's uncertainty principle only allows us to measure the amplitude or the phase of the photons with a specific accuracy and the product is a constant. If we squeeze the phase of the light so that the accuracy in measuring the phase is reduced then we can measure the amplitude more accurately since it is only the product of the two that we cannot measure at a higher accuracy. This quantum approach of squeezing light allows far more sensitive measurements that are forbidden in classical measurement systems.The project brings together a range of UK companies, government agencies, standards laboratories and universities to deliver the portable current standard and the high sensitivity gas detector. I will be supplying demonstrators to a range of collaborators who will evaluate the performance with successful devices being transferred to UK companies to help develop next generation products. The project will also train 2 research associates and 2 PhD students in quantum technology.
该项目的愿景是开发实用的量子技术来精确测量电流,并开发二氧化碳、甲烷(用于家庭供暖的气体)和二氧化碳等气体的高灵敏度探测器。单电子晶体管在打开时仅允许一个电子穿过器件以形成电流。如果控制栅极以高频开关,则通过器件的电流就是频率乘以电子电荷,通过计算电子数量,可以准确测量电流。由于晶体管所需的量子态之间的能量差异很小,迄今为止所有此类设备只能在低温下工作。我建议制造一个比任何以前报道的器件都要小的单电子晶体管,该晶体管在量子态之间具有很大的能量并且在室温下工作。气体分子吸收非常特定波长的光,其中在中红外部分电磁波谱对应于将原子结合在一起形成气体分子的键的振动能量。这提供了分子指纹,因为每个分子仅吸收特定波长,因此可用于识别气体。通过测量分子指纹波长下的光吸收,已经存在用于检测二氧化碳、一氧化碳和甲烷气体的气体探测器,但家用小型电池供电探测器的灵敏度仅为百万分之一。对于许多科学、医疗保健、工业和安全应用来说,灵敏度至少需要提高一千倍。迄今为止,以这种精度进行测量的系统体积庞大,并且需要大型激光器。该提案将使用量子技术构建一个更小、更便宜的芯片级气体探测器,其灵敏度为十亿分之一,可以集成到手机中或用于电池电源传感器。我建议利用光的量子性质来生产 2 个独立的气体探测器。称为光子的光包,它们具有相同的波长和相同的相位,当光穿过波导时,波峰和波谷位于空间中的相同点。海森堡不确定性原理只允许我们以特定的精度测量光子的振幅或相位,并且乘积是常数。如果我们挤压光的相位,从而降低测量相位的精度,那么我们可以更准确地测量幅度,因为它只是两者的乘积,我们无法以更高的精度测量。这种挤压光的量子方法可以实现更灵敏的测量,而这在经典测量系统中是禁止的。该项目汇集了一系列英国公司、政府机构、标准实验室和大学,以提供便携式电流标准和高灵敏度气体探测器。我将为一系列合作者提供演示器,他们将评估成功设备转移到英国公司以帮助开发下一代产品的性能。该项目还将培训 2 名量子技术研究员和 2 名博士生。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
One dimensional transport in top-down fabricated silicon nanowires
自上而下制造的硅纳米线中的一维传输
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Felix J Schlupp
  • 通讯作者:
    Felix J Schlupp
Strain analysis of a Ge micro disk using precession electron diffraction
使用进动电子衍射对 Ge 微盘进行应变分析
  • DOI:
    10.1063/1.5113761
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Bashir A
  • 通讯作者:
    Bashir A
Geiger Mode Ge-on-Si Single-Photon Avalanche Diode Detectors
  • DOI:
    10.1109/group4.2019.8853918
  • 发表时间:
    2019-08
  • 期刊:
  • 影响因子:
    0
  • 作者:
    G. Buller;D. Dumas;Z. Greener;J. Kirdoda;K. Kuzmenko;R. Millar;M. Mirza;D. Paul;P. Vines
  • 通讯作者:
    G. Buller;D. Dumas;Z. Greener;J. Kirdoda;K. Kuzmenko;R. Millar;M. Mirza;D. Paul;P. Vines
Challenges in engineering platform technologies for quantum technology
量子技术工程平台技术的挑战
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Douglas J Paul
  • 通讯作者:
    Douglas J Paul
The Performance and Electrical Transport of Silicon Nanowires Transistors
硅纳米线晶体管的性能和电传输
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Douglas J Paul
  • 通讯作者:
    Douglas J Paul
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Douglas Paul其他文献

Decoupling the dark count rate contributions in Ge-on-Si single photon avalanche diodes
解耦硅基硅单光子雪崩二极管中的暗计数率贡献
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Dumas;C. Coughlan;Charles Smith;Muhammad M A Mirza;J. Kirdoda;Fiona Fleming;C. McCarthy;Hannah Mowbray;Xin Yi;Lisa Saalbach;Gerald Buller;Douglas Paul;Ross Millar
  • 通讯作者:
    Ross Millar
Ge-on-Si single photon avalanche diode performance enhancement with photonic crystal nano-hole arrays
利用光子晶体纳米孔阵列增强硅基硅单光子雪崩二极管性能
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    C. McCarthy;Charles Smith;Hannah Mowbray;Douglas Paul;Ross Millar
  • 通讯作者:
    Ross Millar

Douglas Paul的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Douglas Paul', 18)}}的其他基金

Chip-scale Atomic Systems for a Quantum Navigator
用于量子导航器的芯片级原子系统
  • 批准号:
    EP/X012689/1
  • 财政年份:
    2023
  • 资助金额:
    $ 193.01万
  • 项目类别:
    Research Grant
A Chip-Scale 2-Photon Rubidium Atomic Clock
芯片级 2 光子铷原子钟
  • 批准号:
    EP/Y00485X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 193.01万
  • 项目类别:
    Research Grant
Probing the States of Single Molecules for Sensing and Multi-value Memory Applications
探测传感和多值存储器应用的单分子状态
  • 批准号:
    EP/V048341/1
  • 财政年份:
    2022
  • 资助金额:
    $ 193.01万
  • 项目类别:
    Research Grant
Squeezed Light quAntum MEMS Gravimeter - SLAM Gravimeter
挤压光量子MEMS重力仪-SLAM重力仪
  • 批准号:
    EP/R043590/1
  • 财政年份:
    2018
  • 资助金额:
    $ 193.01万
  • 项目类别:
    Research Grant
gMOT: Scaleable manufacture and evaluation of miniature cold atom traps
gMOT:微型冷原子陷阱的可扩展制造和评估
  • 批准号:
    EP/R021325/1
  • 财政年份:
    2017
  • 资助金额:
    $ 193.01万
  • 项目类别:
    Research Grant
DIFFRACT - Integrated Distributed Feedback Lasers for Cold Atom Technologies
DIFFRACT - 用于冷原子技术的集成分布式反馈激光器
  • 批准号:
    EP/R001529/1
  • 财政年份:
    2017
  • 资助金额:
    $ 193.01万
  • 项目类别:
    Research Grant
Room Temperature Terahertz Quantum Cascade Lasers on Silicon Substrates
硅衬底上的室温太赫兹量子级联激光器
  • 批准号:
    EP/H02364X/1
  • 财政年份:
    2010
  • 资助金额:
    $ 193.01万
  • 项目类别:
    Research Grant
Silicon Resonant Tunnelling Diodes and Circuits
硅谐振隧道二极管和电路
  • 批准号:
    EP/G038961/1
  • 财政年份:
    2009
  • 资助金额:
    $ 193.01万
  • 项目类别:
    Research Grant

相似国自然基金

无经典信道高效连续变量量子密钥分发技术研究
  • 批准号:
    62371060
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于微区光电性能测量技术的红光微型量子点发光二极管尺寸缩小失效机制研究
  • 批准号:
    12374385
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
利用光学参量放大技术优化量子信息处理
  • 批准号:
    12304390
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子启发的复合语义视频实例检索技术研究
  • 批准号:
    62372339
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于量子技术的量子引力探究
  • 批准号:
    12374482
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

A next-generation extendable simulation environment for affordable, accurate, and efficient free energy simulations
下一代可扩展模拟环境,可实现经济、准确且高效的自由能源模拟
  • 批准号:
    10638121
  • 财政年份:
    2023
  • 资助金额:
    $ 193.01万
  • 项目类别:
Development of an apoptosis biosensor for monitoring of breast cancer
开发用于监测乳腺癌的细胞凋亡生物传感器
  • 批准号:
    10719415
  • 财政年份:
    2023
  • 资助金额:
    $ 193.01万
  • 项目类别:
Orbitrap Eclipse Tribrid Mass Spectrometer as a Regional Resource
Orbitrap Eclipse Tribrid 质谱仪作为区域资源
  • 批准号:
    10629013
  • 财政年份:
    2023
  • 资助金额:
    $ 193.01万
  • 项目类别:
Development of Quantum Magnetic Tunneling Junction Sensor Arrays for Brain Magnetoencephalography (MEG) under Natural Settings
自然环境下脑磁图 (MEG) 量子磁隧道结传感器阵列的开发
  • 批准号:
    10723802
  • 财政年份:
    2023
  • 资助金额:
    $ 193.01万
  • 项目类别:
Metasurface enhanced and machine learning aided spectrochemical liquid biopsy
超表面增强和机器学习辅助光谱化学液体活检
  • 批准号:
    10647397
  • 财政年份:
    2023
  • 资助金额:
    $ 193.01万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了