POROUS ALUMINIUM METAMATERIALS (POAMS): A VERSATILE, SELF-ASSEMBLED PLASMONIC PLATFORM
多孔铝超材料 (POAMS):多功能自组装等离子体平台
基本信息
- 批准号:EP/M01780X/1
- 负责人:
- 金额:$ 12.78万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2015
- 资助国家:英国
- 起止时间:2015 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The challenges faced by an ever expanding society must be addressed by technological progress. Issues of longstanding importance, such as health and medicine, currently require advances in both treatment and diagnostics that are inexpensive and therefore widely distributable. In order to have minor environmental impact, technological advancements must consider their impact in terms of both energy efficiency, sustainability and cost. To meet these challenges, adapt successfully and fulfil current and future requirements, novel materials designed to have unique and functional properties must be manufactured, investigated and implemented. In the recent past, due to significant research, there has been a revolution in the ability to control the structure and composition of materials at smaller and smaller dimensions. Nowhere has this been as striking as the fabrication of optical metamaterials, where bottom-up material design produces optical properties that are not found in naturally occuring materials. Attention grabbing phenomena such as optical cloaking and perfect lensing, but these demonstrations belie the huge range of possible applications.At tiny scales, light's interaction with materials provides a wealth of interesting phenomena and despite worldwide research we are only beginning to realise the full potential. One area already delivering healthcare diagnostics to the market is plasmonics, involving the interaction of light with metal surfaces and particles, allowing it to be concentrated and manipulated at ever decreasing length scales. This project aims to explore a recently discovered type of optical metamaterial based on metallic nanoholes. The fabrication begins using thin aluminium layers which are converted into aluminium oxide and simultaneously perforated with holes by a simple electrochemical process. The holes are only a few tens of nanometres in size; the size and separation of these pores may be varied in process. By using simple techniques, a layer of thin aluminium may be left underneath the porous layer. Afterwards, it is a simple step to use the porous template as a mask and expose the system to an argon ion beam. This creates an array of holes, much smaller in size than the wavelength of light, in the underlying aluminium. The process allows broad control over the hole size and separation via the anodisation step, enabling both a new kind of metamaterial to be fabriacted for use from the deep-UV to visible spectral range. A self-assembled process, this method can easily produce large areas of incredible precision and is inexpensive.Current research primarily uses gold or silver for metamaterials due to their attractive properties despite their expense. This project is instead based on aluminium, the most abundant metal and is suitable for many applications. In IT, overcoming the density and speed limitations facing conventional electronic circuitry requires the use of optical circuitry using optical signals. Aluminium, with excellent properties in the UV can help achieve this, as the wavelength is smaller, so will be the resulting devices, potentially helping to realise new optical circuitry to compete with electronics. Most importantly, and a key objective of this project, is determining the suitability of novel, affordable materials for the detection of chemical and biological agents. This can have huge implications for medical research by assisting diagnosis and prognosis and these materials have the potential to monitor bio-chemical and chemical reactions with high precision, which may be enhanced by UV effects present in biological and organic molecules. These examples highlight the versatility of optical metamaterials that may only minute differences in dimensions and composition.
不断扩展的社会面临的挑战必须通过技术进步来应对。诸如健康和医学之类的长期重要性问题目前需要在廉价且因此可分布的治疗和诊断方面取得进展。为了产生较小的环境影响,技术进步必须考虑其在能源效率,可持续性和成本方面的影响。为了应对这些挑战,可以成功地适应当前和未来的要求,必须制造,调查和实施旨在具有独特和功能性能的新型材料。在最近的过去,由于大量研究,在越来越小的维度上控制材料的结构和组成的能力发生了一场革命。这没有像光学超材料的制造那样引人注目,在这种材料上,自然的材料设计产生了在自然发生材料中找不到的光学特性。注意抓住现象,例如光学掩饰和完美的镜头,但是这些示威活动却掩盖了许多可能的应用。已经向市场提供医疗保健诊断的领域是血浆,涉及光与金属表面和颗粒的相互作用,从而使其浓缩并以较小的长度尺度进行操纵。该项目旨在探索基于金属纳米霍尔斯的最近发现的光学超材料类型。该制造开始使用薄的铝层,这些铝层被转化为氧化铝,并通过简单的电化学过程同时用孔穿孔。这些孔的大小只有几十纳米。这些孔的大小和分离可能在过程中有所不同。通过使用简单的技术,一层细铝可能会留在多孔层下方。之后,将多孔模板用作掩模并将系统暴露于氩离子束上是一个简单的步骤。这会产生一系列孔,大小比在底层铝中的光波长小得多。该过程允许通过阳极阳极步骤进行广泛控制孔的大小和分离,从而使两种新型的超材料都可以从深伏脉到可见的光谱范围内使用。这种方法是一个自组装的过程,可以轻松地产生令人难以置信的精确度,并且价格便宜。流动研究主要用于超材料,因为它们具有诱人的特性,尽管它们的费用很高。相反,该项目基于铝,最丰富的金属,适用于许多应用。在其中,克服传统电子电路面临的密度和速度限制需要使用光学信号使用光电路。铝在紫外线中具有出色的特性可以帮助实现这一目标,因为波长较小,因此将是生成的设备,可能有助于实现新的光学电路以与电子设备竞争。最重要的是,该项目的关键目标是确定新颖的,负担得起的材料可用于检测化学和生物学剂。这可以通过协助诊断和预后对医学研究产生巨大影响,这些材料具有高精度监测生物化学和化学反应的潜力,这可能会通过生物和有机分子中的紫外线效应增强。这些示例突出了光学超材料的多功能性,这些材料可能仅在尺寸和组成方面存在微小的差异。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Self-assembled hyperbolic metamaterials in the deep UV (Conference Presentation)
深紫外自组装双曲超材料(会议演示)
- DOI:10.1117/12.2228360
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Skov Cambpell S
- 通讯作者:Skov Cambpell S
Large-area fabrication and characterisation of ultraviolet regime metamaterials manufactured using self-assembly techniques (Conference Presentation)
使用自组装技术制造的紫外区超材料的大面积制造和表征(会议演示)
- DOI:10.1117/12.2227941
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Wardley W
- 通讯作者:Wardley W
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Wayne Dickson其他文献
Wayne Dickson的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
低频宽带仿生梯度泡沫铝—超材料耦合结构吸声特性及调控机制
- 批准号:52175264
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
低频宽带仿生梯度泡沫铝-超材料耦合结构吸声特性及调控机制
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:
GFRP/Al-Li复合层板喷丸成形与服役过程的残余应力演变及对变形的影响机理
- 批准号:51705235
- 批准年份:2017
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
碳缺位型无粘结相碳化钨铝的制备、性能及机理的研究
- 批准号:51702314
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
航天惯性器件用SiCp/Al结构件高效超精密加工控制与优化
- 批准号:U1737201
- 批准年份:2017
- 资助金额:255.0 万元
- 项目类别:联合基金项目
相似海外基金
Impact of impurity elements on the corrosion performance of high strength 6xxx aluminium alloys
杂质元素对高强6xxx铝合金腐蚀性能的影响
- 批准号:
2906344 - 财政年份:2024
- 资助金额:
$ 12.78万 - 项目类别:
Studentship
Developing aluminium-sulfur batteries with high voltage and low cost
开发高电压、低成本铝硫电池
- 批准号:
DE240100952 - 财政年份:2024
- 资助金额:
$ 12.78万 - 项目类别:
Discovery Early Career Researcher Award
Aluminium at the centre of sustainable catalysis
铝是可持续催化的核心
- 批准号:
FT230100565 - 财政年份:2024
- 资助金额:
$ 12.78万 - 项目类别:
ARC Future Fellowships
EPSRC-SFI Aluminium-Rich Nitride Electronics (ARNE)
EPSRC-SFI 富铝氮化物电子器件 (ARNE)
- 批准号:
EP/X036901/1 - 财政年份:2024
- 资助金额:
$ 12.78万 - 项目类别:
Research Grant
H2GLASS - advancing Hydrogen (H2) technologies and smart production systems TO decarbonise the GLass and Aluminium SectorS
H2GLASS - 先进的氢 (H2) 技术和智能生产系统,使玻璃和铝行业脱碳
- 批准号:
10063137 - 财政年份:2023
- 资助金额:
$ 12.78万 - 项目类别:
EU-Funded