Multi-objective performance-based design of tall buildings using energy harvesting enabled tuned mass-damper-inerter (TMDI) devices

使用支持能量收集的调谐质量阻尼惰性器 (TMDI) 设备进行基于多目标性能的高层建筑设计

基本信息

  • 批准号:
    EP/M017621/1
  • 负责人:
  • 金额:
    $ 31.95万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

This project focuses on wind and/or earthquake excited buildings whose oscillatory motion is controlled via, the commonly used, tuned-mass-damper (TMD): an additional free-to-vibrate mass mounted to the top of buildings via springs and viscous dampers. TMDs are optimally designed (tuned) such that kinetic energy is transferred from the building ("primary structure") to the TMD mass and dissipated by dampers. In general, larger TMD mass achieves better vibration suppression, but this is limited by architectural and structural (weight) constraints. Control of wind induced vibrations require TMD mass of 1%-5% of total building mass and this ratio can reach up to 15-20% or more for severe earthquake excitations.The project:-exploits the mass amplification effect of flywheel-based mass amplification devices (MADs) to achieve different apparent mass for the TMD+MAD configuration without changing the TMD weight; -explores the potential of energy harvesting from wind-induced building vibrations by containing the MAD's flywheel within a magnetic field such that rotational kinetic energy is transformed into electric energy;-establishes a "pro-active" control paradigm within a multi-objective performance-based structural design framework: the apparent mass of the TMD+MAD changes through gearing according to pre-set "optimally" tuned values for different objectives such as optimal vibration suppression at serviceability state for user comfort- "medium" apparent mass; maximization of energy harvesting during off-hours in office buildings- "low" apparent mass; minimisation of potential for structural damage at ultimate state {extreme wind fronts/downbursts or earthquakes}- "large" apparent mass). These changes can be "programmable" and informed by weather forecast and/or by early warning earthquake systems achieving "smart"/adaptive, energy efficient and resilient structures.The proposed research idea is potentially transformative because it:1)will allow for ever-more slender, taller, cost-effective, and aesthetically pleasing tall buildings in congested urban environments (e.g., London, Tokyo, NY, etc. where land use optimisation is essential) through the ability to control wind-induced (and/or earthquake) oscillations by more lightweight TMDs compared to the ones used today. These buildings will also be safer in more aggressive climate environments and with lower CO2 footprint through effective energy harvesting from large amplitude oscillations.2)will change the "purpose" and functionality of building structures. Through the pro-active control framework, an office building can be designed to ensure absolute comfort to occupants during work hours even under future ever extreme climate change-induced winds for whichit has not been initially been built for. During off-hours the same structure becomes a flexible cantilever producing renewable energy from wind. The potential ultimate impact ot the project is:-TECHNOLOGICAL: sparkling considerable new technological R&D and commercialisation opportunities for UK and international manufacturers of vibration suppression and energy harvesting equipment for civil and mechanical/automotive applications globally. SOCIETAL: enhancing infrastructure users' comfort, aesthetics, and structural safety and resiliency under future aggressive environments due to climate change. ECONOMICAL: stimulating the manufacturing sector, the construction industry, and the engineering consultancies towards world-class structures optimally designed for energy harvesting and vibration control; enhancing existing and future infrastructure value and economic life-cycle. ENVIRONMENTAL: reducing energy use and CO2 footprint of buildings through optimum wind energy harvesting, less material usage, and better land usage since more tall buildings can be built in a cost-effective manner.
该项目重点关注风和/或地震激发的建筑物,其振荡运动通过常用的调谐质量阻尼器 (TMD) 进行控制:通过弹簧和粘性阻尼器安装在建筑物顶部的附加自由振动质量。 TMD 经过优化设计(调整),以便动能从建筑物(“主要结构”)转移到 TMD 质量并通过阻尼器消散。一般来说,较大的 TMD 质量可以实现更好的振动抑制,但这受到建筑和结构(重量)约束的限制。风振控制要求TMD质量占建筑总质量的1%-5%,对于严重的地震激励,该比例可达15-20%或更高。该项目:-利用飞轮质量的质量放大效应放大装置(MAD),在不改变 TMD 重量的情况下实现 TMD+MAD 配置的不同表观质量; -通过将 MAD 飞轮置于磁场中,将旋转动能转化为电能,探索从风引起的建筑振动中收集能量的潜力;-在多目标性能中建立“主动”控制范式-基于结构设计框架:TMD+MAD的表观质量通过传动装置根据不同目标的预设“最佳”调整值而变化,例如在可使用状态下的最佳振动抑制以确保用户舒适度-“中等”表观质量;办公楼非工作时间最大限度地收集能量——“低”表观质量;最大限度地减少最终状态下结构损坏的可能性{极端风锋/下击暴流或地震}-“大”表观质量)。这些变化可以是“可编程的”,并通过天气预报和/或早期预警地震系统实现“智能”/自适应、节能和弹性结构。所提出的研究想法具有潜在的变革性,因为它:1)将允许永远-通过控制风引起的(和/或与目前使用的 TMD 相比,更轻的 TMD 可以产生地震)振荡。这些建筑物在更恶劣的气候环境中也将更加安全,并且通过从大幅振动中有效收集能量,二氧化碳足迹更低。2)将改变建筑结构的“用途”和功能。通过主动控制框架,办公楼的设计可以确保居住者在工作时间内绝对舒适,即使是在未来极端气候变化引起的大风下,办公楼最初并未针对这种情况而建造。在非工作时间,同一结构变成一个灵活的悬臂梁,利用风能生产可再生能源。该项目的潜在最终影响是:-技术:为英国和国际民用和机械/汽车应用的振动抑制和能量收集设备制造商带来大量新技术研发和商业化机会。社会:在气候变化导致的未来恶劣环境下,提高基础设施用户的舒适度、美观度、结构安全性和弹性。经济:刺激制造业、建筑业和工程咨询公司开发出针对能量收集和振动控制进行优化设计的世界一流结构;提高现有和未来基础设施的价值和经济生命周期。环境:通过最佳的风能收集、更少的材料使用和更好的土地利用来减少建筑物的能源使用和二氧化碳足迹,因为可以以具有成本效益的方式建造更多高层建筑。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Optimization of Engineering Design Problems Using Atomic Orbital Search Algorithm
  • DOI:
    10.1109/access.2021.3096726
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Azizi, Mahdi;Talatahari, Siamak;Giaralis, Agathoklis
  • 通讯作者:
    Giaralis, Agathoklis
Reliability-based design of tuned mass-damper-inerter (TMDI) equipped MDOF structures under stochastic seismic excitation and parametric uncertainty
随机地震激励和参数不确定性下配备调谐质量阻尼惯性器 (TMDI) 的 MDOF 结构的基于可靠性的设计
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Giaralis A
  • 通讯作者:
    Giaralis A
Robust Cascade H Infinity Control of BLDC Motor Systems using Fixed-Structure Two Degrees of Freedom Controllers Designed Via Genetic Algorithm
使用通过遗传算法设计的固定结构二自由度控制器对 BLDC 电机系统进行鲁棒级联 H 无限控制
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chitsanga N
  • 通讯作者:
    Chitsanga N
An inerter-equipped vibrating barrier for noninvasive motion control of seismically excited structures
  • DOI:
    10.1002/stc.2474
  • 发表时间:
    2019-12-17
  • 期刊:
  • 影响因子:
    5.4
  • 作者:
    Cacciola, Pierfrancesco;Tombari, Alessandro;Giaralis, Agathoklis
  • 通讯作者:
    Giaralis, Agathoklis
Reliability-based design of tuned mass-damper-inerter (TMDI) equipped multi-storey frame buildings under seismic excitation
  • DOI:
    10.14288/1.0076257
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    0
  • 作者:
    A. Giaralis;A. Taflanidis
  • 通讯作者:
    A. Giaralis;A. Taflanidis
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Agathoklis Giaralis其他文献

Agathoklis Giaralis的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Agathoklis Giaralis', 18)}}的其他基金

Compressive Sensing for Wireless Vibration-Based Structural Health Monitoring of Civil Engineering Structures
基于无线振动的土木工程结构健康监测的压缩传感
  • 批准号:
    EP/K023047/1
  • 财政年份:
    2013
  • 资助金额:
    $ 31.95万
  • 项目类别:
    Research Grant

相似国自然基金

基于色氨酸代谢调节CD4+T细胞免疫表型探讨慢加急性肝衰竭瘀黄证亚型的生物学基础及客观辨识研究
  • 批准号:
    82305067
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于耳声发射产生源特性和时频域表征的客观听力检测技术研究
  • 批准号:
    62301096
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于抑郁症多维度客观评估的特异性触发型光电双信号生物传感系统的应用研究
  • 批准号:
    82372090
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
脑电波激发与特征量化主客观融通的实景图像美学表达研究
  • 批准号:
    62366024
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
人微言轻?员工主客观权力对其建言被采纳可能性的影响及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Synthesizability-constrained expansion and multi-objective evolution of antitubercular compounds
抗结核化合物的可合成性约束扩展和多目标进化
  • 批准号:
    10430402
  • 财政年份:
    2022
  • 资助金额:
    $ 31.95万
  • 项目类别:
Synthesizability-constrained expansion and multi-objective evolution of antitubercular compounds
抗结核化合物的可合成性约束扩展和多目标进化
  • 批准号:
    10594577
  • 财政年份:
    2022
  • 资助金额:
    $ 31.95万
  • 项目类别:
Multi-objective representation learning methods for interpetable predictions of patient outcomesusing electronic health records
使用电子健康记录对患者结果进行可重复预测的多目标表示学习方法
  • 批准号:
    10453863
  • 财政年份:
    2021
  • 资助金额:
    $ 31.95万
  • 项目类别:
Multi-objective representation learning methods for interpetable predictions of patient outcomesusing electronic health records
使用电子健康记录对患者结果进行可重复预测的多目标表示学习方法
  • 批准号:
    10477327
  • 财政年份:
    2021
  • 资助金额:
    $ 31.95万
  • 项目类别:
Multi-objective representation learning methods for interpetable predictions of patient outcomesusing electronic health records
使用电子健康记录对患者结果进行可重复预测的多目标表示学习方法
  • 批准号:
    10684907
  • 财政年份:
    2021
  • 资助金额:
    $ 31.95万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了