Engineering Fellowships for Growth: Imperceptible smart coatings based on atomically thin materials

增长工程奖学金:基于原子级薄材料的难以察觉的智能涂层

基本信息

  • 批准号:
    EP/M002438/1
  • 负责人:
  • 金额:
    $ 143.54万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The need for greater fuel efficiency in the aeronautical, automotive and aerospace industries is driving the demand for low weight high-performance materials. For example, low specific weight electronic devices which can generate light or harvest electricity and can be embedded into paints or windows would make the structures of current vehicles considerably lighter, therefore more efficient. At the same time, low specific weight electrical conductors acting as a ground in the electrical circuits of vehicles and yet able to protect aircraft from lightning bolts would also reduce considerably the vehicle weight. Extra lightweight transparent conductors and semiconductors also constitute the fundamental ingredients for the next generation flexible solar cells and future flexible electronic components. Atomically thin materials, not only offer these desired properties, but with their excellent mechanical, thermal, electrical, and gas impermeability properties are ideal for the realization of multi-functional coatings. Atomically thin materials are the thinnest materials which can be conceived. Graphene -a monoatomic carbon layer- is certainly the most celebrated and studied representative of this new family of materials This is the strongest known material, the best electrical and thermal conductor which is mechanically flexible and transparent. Other emerging atomically thin materials, e.g. dichalcogenides such as MoS2, have complementary characteristics to graphene such as semiconducting properties necessary for transistor applications. Recent advances in chemical functionalization have shown that the properties of these atomically thin materials can be enhanced to unprecedented levels by chemical bonding of a molecule or a chemical element to the pristine material. The most recent example of the potential of chemical functionalization is GraphExeter, a new graphene-based material which my team developed at Exeter. In this case, functionalization with FeCl3 of few-layer graphene results in the best transparent electrical conductor which outperforms Indium Tin Oxide used in displays. The exploitation of atomically thin materials with extraordinary performances in high-value products such as smart imperceptible coatings is exactly at the heart of this proposal. Thus, this ambitious fellowship aims to build UK leadership in engineering advanced materials by exploiting the emerging technologies of atomically thin materials for prototyping imperceptible smart coatings. This will accelerate the fast development of highly efficient aircrafts, cars, displays and solar cells with added novel functionalities. Achieving this aim will be the foundation of several cutting-edge technologies crucial for our society, such as transforming the windscreens of cars and airplanes into display controls and GPS-activated maps and at the same time allowing their windows and paints to harvest electricity from the sun.Together with the team that I will develop to deliver this research vision, we will aim at understanding the materials properties and processing challenges involved in the large scale manufacturing of atomically thin conducting and semiconducting coatings. Building on this understanding, my team will focus on developing high-value products by exploring the sustainable use of atomically thin materials for prototyping multi-functional smart coatings. Specifically, we will develop imperceptible coatings, which will not only enhance the efficiency of aircrafts, cars, displays and solar cells, but will add novel functionalities, such as light emission and energy harvesting. The outcomes of this research will therefore have a revolutionary impact on society as it will change the current landscape of many industries, ranging from automotive and aerospace to information and communication technologies. My track record of outstanding research in the studies of such materials puts me in a unique position to complete such challenging tasks.
在航空,汽车和航空航天行业中需要提高燃油效率的需求正在推动对低重量高性能材料的需求。例如,低特异性的电子设备可以产生光或收获电能并可以嵌入油漆或窗户中,这会使当前车辆的结构变得更轻,因此更有效。同时,低特异性重量电导体在车辆的电路中充当地面,但能够保护飞机免受闪电螺栓的影响也会大大减轻车辆的重量。额外的轻质透明导体和半导体也构成了下一代柔性太阳能电池和未来柔性电子组件的基本要素。原子上的材料不仅提供了这些所需的特性,而且具有出色的机械,热,电和气体不渗透特性,是实现多功能涂层的理想选择。原子上薄的材料是可以构想的最薄的材料。石墨烯 - 单原子碳层 - 当然是这种新材料家族的最著名,最有代表的代表,这是最强的已知材料,是机械灵活且透明的最佳电气和热导体。其他出现的原子薄材料,例如诸如MOS2之类的二分法具有与石墨烯的互补特性,例如晶体管应用所需的半导体特性。化学官能化的最新进展表明,通过分子的化学键或化学元素对原始材料的化学键合化,这些原子薄材料的性能可以增强到前所未有的水平。化学功能化潜力的最新示例是Graphexeter,这是我的团队在埃克塞特(Exeter)开发的一种新的基于石墨烯的材料。在这种情况下,用少量石墨烯的FECL3功能化会导致最佳透明的电导体,从而超过了显示器中使用的二氧化碳锡。在高价值产品(例如智能不可察觉的涂料)中,对原子上的薄材料的开发完全是该提案的核心。因此,这一雄心勃勃的奖学金旨在通过利用原子薄材料的新兴技术来建立英国的领导才能,以制造原型的智能涂料。这将加速具有高效的飞机,汽车,显示器和太阳能电池的快速开发,并具有新颖的功能。实现这一目标将是对我们社会至关重要的几种尖端技术的基础,例如将汽车和飞机的挡风玻璃转变为展示控件和GPS激活的地图,同时又将其窗户和油漆从太阳中收获到太阳能的团队中,我将在较大的范围内挑战材料,我们将在较大的范围内进行挑战,我们将在较大的范围内进行挑战,我们将努力地进行挑战,我们将在挑战范围内,我们会挑战材料,并且在质量方面构成了质量,我们会在质量方面进行挑战进行和半导体涂层。在这种理解的基础上,我的团队将专注于开发高价值产品,通过探索原子上薄材料的可持续使用来制作多功能智能涂料。具体而言,我们将开发不可感知的涂料,这不仅会提高飞机,汽车,显示器和太阳能电池的效率,而且还会增加新型功能,例如光发射和能量收获。因此,这项研究的结果将对社会产生革命性的影响,因为它将改变许多行业的当前景观,从汽车和航空航天到信息和通信技术。我在此类材料研究中进行的杰出研究的记录使我处于完成此类具有挑战性的任务的独特位置。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Temperature Evolution in Nanoscale Carbon-Based Memory Devices Due to Local Joule Heating
  • DOI:
    10.1109/tnano.2017.2674303
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    T. Bachmann;A. Alexeev;W. Koelmans;F. Zipoli;A. Ott;C. Dou;A. Ferrari;V. K. Nagareddy;M. Craciun;V. Jonnalagadda;A. Curioni;A. Sebastian;E. Eleftheriou;C. Wright
  • 通讯作者:
    T. Bachmann;A. Alexeev;W. Koelmans;F. Zipoli;A. Ott;C. Dou;A. Ferrari;V. K. Nagareddy;M. Craciun;V. Jonnalagadda;A. Curioni;A. Sebastian;E. Eleftheriou;C. Wright
Homogeneously bright, flexible and foldable lighting devices with functionalised graphene electrodes
具有功能化石墨烯电极的均匀明亮、灵活且可折叠的照明装置
  • DOI:
    10.48550/arxiv.1606.05482
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alonso E
  • 通讯作者:
    Alonso E
Is graphene a good transparent electrode for photovoltaics and display applications?
  • DOI:
    10.1049/iet-cds.2015.0121
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Bointon, Thomas H.;Russo, Saverio;Craciun, Monica Felicia
  • 通讯作者:
    Craciun, Monica Felicia
High Quality Monolayer Graphene Synthesized by Resistive Heating Cold Wall Chemical Vapor Deposition.
High quality monolayer graphene synthesized by resistive heating cold wall chemical vapour deposition
电阻加热冷壁化学气相沉积法合成高品质单层石墨烯
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bointon Thomas H.
  • 通讯作者:
    Bointon Thomas H.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Monica Craciun其他文献

CVD Graphene/Lead (Pb)-based Cooper-pair splitter
CVD 石墨烯/铅 (Pb) 基库珀对分光器
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ivan V. Borzenets;Yuya Shimazaki;Gareth Jones;Monica Craciun;Saverio Russo;Michihasa Yamamoto;and Seigo Tarucha
  • 通讯作者:
    and Seigo Tarucha

Monica Craciun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Monica Craciun', 18)}}的其他基金

Manufacturing solar fabrics by electronic dyeing of textiles with 2D heterostructures
通过二维异质结构纺织品电子染色制造太阳能织物
  • 批准号:
    EP/V052306/1
  • 财政年份:
    2021
  • 资助金额:
    $ 143.54万
  • 项目类别:
    Research Grant
Wearable light emitting transistors for future communication devices
用于未来通信设备的可穿戴发光晶体管
  • 批准号:
    EP/M001024/1
  • 财政年份:
    2014
  • 资助金额:
    $ 143.54万
  • 项目类别:
    Research Grant

相似国自然基金

相似海外基金

Engineering Fellowships for Growth - Morphogenesis Manufacturing: Smart Materials With Programmed Transformations
增长工程奖学金 - 形态发生制造:具有程序化转变的智能材料
  • 批准号:
    EP/M002489/3
  • 财政年份:
    2018
  • 资助金额:
    $ 143.54万
  • 项目类别:
    Fellowship
Engineering Fellowships for Growth - Morphogenesis Manufacturing: Smart Materials With Programmed Transformations
增长工程奖学金 - 形态发生制造:具有程序化转变的智能材料
  • 批准号:
    EP/M002489/2
  • 财政年份:
    2016
  • 资助金额:
    $ 143.54万
  • 项目类别:
    Fellowship
Engineering Fellowships for Growth: Materials by Design for Impact in Aerospace Engineering
工程奖学金促进增长:材料设计对航空航天工程的影响
  • 批准号:
    EP/M002322/2
  • 财政年份:
    2015
  • 资助金额:
    $ 143.54万
  • 项目类别:
    Fellowship
Engineering Fellowships For Growth: Designing Feedback Control in Biology for Robustness and Scalability
增长工程奖学金:设计生物学中的反馈控制以实现鲁棒性和可扩展性
  • 批准号:
    EP/M002454/1
  • 财政年份:
    2015
  • 资助金额:
    $ 143.54万
  • 项目类别:
    Fellowship
Engineering Fellowships for Growth: Systems and control engineering framework for robust and efficient synthetic biology
增长工程奖学金:用于稳健和高效合成生物学的系统和控制工程框架
  • 批准号:
    EP/M002187/1
  • 财政年份:
    2015
  • 资助金额:
    $ 143.54万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了