Engineering Fellowships for Growth: Imperceptible smart coatings based on atomically thin materials

增长工程奖学金:基于原子级薄材料的难以察觉的智能涂层

基本信息

  • 批准号:
    EP/M002438/1
  • 负责人:
  • 金额:
    $ 143.54万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The need for greater fuel efficiency in the aeronautical, automotive and aerospace industries is driving the demand for low weight high-performance materials. For example, low specific weight electronic devices which can generate light or harvest electricity and can be embedded into paints or windows would make the structures of current vehicles considerably lighter, therefore more efficient. At the same time, low specific weight electrical conductors acting as a ground in the electrical circuits of vehicles and yet able to protect aircraft from lightning bolts would also reduce considerably the vehicle weight. Extra lightweight transparent conductors and semiconductors also constitute the fundamental ingredients for the next generation flexible solar cells and future flexible electronic components. Atomically thin materials, not only offer these desired properties, but with their excellent mechanical, thermal, electrical, and gas impermeability properties are ideal for the realization of multi-functional coatings. Atomically thin materials are the thinnest materials which can be conceived. Graphene -a monoatomic carbon layer- is certainly the most celebrated and studied representative of this new family of materials This is the strongest known material, the best electrical and thermal conductor which is mechanically flexible and transparent. Other emerging atomically thin materials, e.g. dichalcogenides such as MoS2, have complementary characteristics to graphene such as semiconducting properties necessary for transistor applications. Recent advances in chemical functionalization have shown that the properties of these atomically thin materials can be enhanced to unprecedented levels by chemical bonding of a molecule or a chemical element to the pristine material. The most recent example of the potential of chemical functionalization is GraphExeter, a new graphene-based material which my team developed at Exeter. In this case, functionalization with FeCl3 of few-layer graphene results in the best transparent electrical conductor which outperforms Indium Tin Oxide used in displays. The exploitation of atomically thin materials with extraordinary performances in high-value products such as smart imperceptible coatings is exactly at the heart of this proposal. Thus, this ambitious fellowship aims to build UK leadership in engineering advanced materials by exploiting the emerging technologies of atomically thin materials for prototyping imperceptible smart coatings. This will accelerate the fast development of highly efficient aircrafts, cars, displays and solar cells with added novel functionalities. Achieving this aim will be the foundation of several cutting-edge technologies crucial for our society, such as transforming the windscreens of cars and airplanes into display controls and GPS-activated maps and at the same time allowing their windows and paints to harvest electricity from the sun.Together with the team that I will develop to deliver this research vision, we will aim at understanding the materials properties and processing challenges involved in the large scale manufacturing of atomically thin conducting and semiconducting coatings. Building on this understanding, my team will focus on developing high-value products by exploring the sustainable use of atomically thin materials for prototyping multi-functional smart coatings. Specifically, we will develop imperceptible coatings, which will not only enhance the efficiency of aircrafts, cars, displays and solar cells, but will add novel functionalities, such as light emission and energy harvesting. The outcomes of this research will therefore have a revolutionary impact on society as it will change the current landscape of many industries, ranging from automotive and aerospace to information and communication technologies. My track record of outstanding research in the studies of such materials puts me in a unique position to complete such challenging tasks.
航空、汽车和航空航天行业对更高燃油效率的需求正在推动对轻质高性能材料的需求。例如,可以产生光或收集电力并可以嵌入油漆或窗户中的低比重电子设备将使当前车辆的结构变得相当轻,因此更加高效。与此同时,低比重电导体在车辆电路中充当接地,同时能够保护飞机免受闪电的伤害,这也将大大减轻车辆的重量。超轻质透明导体和半导体也构成了下一代柔性太阳能电池和未来柔性电子元件的基本成分。原子薄材料不仅具有这些所需的特性,而且具有优异的机械、热、电和气密性特性,是实现多功能涂层的理想选择。原子薄材料是可以想象的最薄的材料。石墨烯——一种单原子碳层——无疑是这一新材料家族中最著名和研究最多的代表。这是已知最强的材料,最好的电和热导体,具有机械柔性和透明性。其他新兴的原子薄材料,例如MoS2 等二硫化物具有与石墨烯互补的特性,例如晶体管应用所需的半导体特性。化学功能化的最新进展表明,通过分子或化学元素与原始材料的化学键合,这些原子薄材料的性能可以提高到前所未有的水平。化学功能化潜力的最新例子是 GraphExeter,这是我的团队在埃克塞特开发的一种新型石墨烯材料。在这种情况下,用 FeCl3 对少层石墨烯进行功能化可产生最佳的透明电导体,其性能优于显示器中使用的氧化铟锡。在智能隐形涂层等高价值产品中开发具有非凡性能的原子薄材料正是该提案的核心。因此,这项雄心勃勃的奖学金旨在通过利用原子薄材料的新兴技术来制作难以察觉的智能涂层原型,从而建立英国在先进材料工程领域的领导地位。这将加速高效飞机、汽车、显示器和太阳能电池的快速开发,并增加新颖的功能。实现这一目标将成为对我们社会至关重要的多项尖端技术的基础,例如将汽车和飞机的挡风玻璃转变为显示控制和 GPS 激活的地图,同时允许它们的窗户和油漆从太阳能中获取电力。 sun.与我为实现这一研究愿景而组建的团队一起,我们的目标是了解大规模制造原子级薄导电和半导体涂层所涉及的材料特性和加工挑战。基于这种理解,我的团队将通过探索原子薄材料的可持续使用来制作多功能智能涂层原型,专注于开发高价值产品。具体来说,我们将开发难以察觉的涂层,这不仅会提高飞机、汽车、显示器和太阳能电池的效率,还会增加新的功能,例如光发射和能量收集。因此,这项研究的成果将对社会产生革命性的影响,因为它将改变从汽车、航空航天到信息和通信技术等许多行业的当前格局。我在此类材料研究方面的杰出研究记录使我处于完成此类挑战性任务的独特位置。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Temperature Evolution in Nanoscale Carbon-Based Memory Devices Due to Local Joule Heating
  • DOI:
    10.1109/tnano.2017.2674303
  • 发表时间:
    2017-02
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    T. Bachmann;A. Alexeev;W. Koelmans;F. Zipoli;A. Ott;C. Dou;A. Ferrari;V. K. Nagareddy;M. Craciun;V. Jonnalagadda;A. Curioni;A. Sebastian;E. Eleftheriou;C. Wright
  • 通讯作者:
    T. Bachmann;A. Alexeev;W. Koelmans;F. Zipoli;A. Ott;C. Dou;A. Ferrari;V. K. Nagareddy;M. Craciun;V. Jonnalagadda;A. Curioni;A. Sebastian;E. Eleftheriou;C. Wright
Homogeneously bright, flexible and foldable lighting devices with functionalised graphene electrodes
具有功能化石墨烯电极的均匀明亮、灵活且可折叠的照明装置
  • DOI:
    10.48550/arxiv.1606.05482
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Alonso E
  • 通讯作者:
    Alonso E
Is graphene a good transparent electrode for photovoltaics and display applications?
  • DOI:
    10.1049/iet-cds.2015.0121
  • 发表时间:
    2015-11-01
  • 期刊:
  • 影响因子:
    1.3
  • 作者:
    Bointon, Thomas H.;Russo, Saverio;Craciun, Monica Felicia
  • 通讯作者:
    Craciun, Monica Felicia
High Quality Monolayer Graphene Synthesized by Resistive Heating Cold Wall Chemical Vapor Deposition.
Large-area functionalized CVD graphene for work function matched transparent electrodes.
  • DOI:
    10.1038/srep16464
  • 发表时间:
    2015-11-09
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Bointon TH;Jones GF;De Sanctis A;Hill-Pearce R;Craciun MF;Russo S
  • 通讯作者:
    Russo S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Monica Craciun其他文献

CVD Graphene/Lead (Pb)-based Cooper-pair splitter
CVD 石墨烯/铅 (Pb) 基库珀对分光器
  • DOI:
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ivan V. Borzenets;Yuya Shimazaki;Gareth Jones;Monica Craciun;Saverio Russo;Michihasa Yamamoto;and Seigo Tarucha
  • 通讯作者:
    and Seigo Tarucha

Monica Craciun的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Monica Craciun', 18)}}的其他基金

Manufacturing solar fabrics by electronic dyeing of textiles with 2D heterostructures
通过二维异质结构纺织品电子染色制造太阳能织物
  • 批准号:
    EP/V052306/1
  • 财政年份:
    2021
  • 资助金额:
    $ 143.54万
  • 项目类别:
    Research Grant
Wearable light emitting transistors for future communication devices
用于未来通信设备的可穿戴发光晶体管
  • 批准号:
    EP/M001024/1
  • 财政年份:
    2014
  • 资助金额:
    $ 143.54万
  • 项目类别:
    Research Grant

相似国自然基金

相似海外基金

Engineering Fellowships for Growth - Morphogenesis Manufacturing: Smart Materials With Programmed Transformations
增长工程奖学金 - 形态发生制造:具有程序化转变的智能材料
  • 批准号:
    EP/M002489/3
  • 财政年份:
    2018
  • 资助金额:
    $ 143.54万
  • 项目类别:
    Fellowship
Engineering Fellowships for Growth - Morphogenesis Manufacturing: Smart Materials With Programmed Transformations
增长工程奖学金 - 形态发生制造:具有程序化转变的智能材料
  • 批准号:
    EP/M002489/2
  • 财政年份:
    2016
  • 资助金额:
    $ 143.54万
  • 项目类别:
    Fellowship
Engineering Fellowships for Growth: Materials by Design for Impact in Aerospace Engineering
工程奖学金促进增长:材料设计对航空航天工程的影响
  • 批准号:
    EP/M002322/2
  • 财政年份:
    2015
  • 资助金额:
    $ 143.54万
  • 项目类别:
    Fellowship
Engineering Fellowships For Growth: Designing Feedback Control in Biology for Robustness and Scalability
增长工程奖学金:设计生物学中的反馈控制以实现鲁棒性和可扩展性
  • 批准号:
    EP/M002454/1
  • 财政年份:
    2015
  • 资助金额:
    $ 143.54万
  • 项目类别:
    Fellowship
Engineering Fellowships for Growth: Systems and control engineering framework for robust and efficient synthetic biology
增长工程奖学金:用于稳健和高效合成生物学的系统和控制工程框架
  • 批准号:
    EP/M002187/1
  • 财政年份:
    2015
  • 资助金额:
    $ 143.54万
  • 项目类别:
    Fellowship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了