Unleashing Plasmonics

释放等离激元

基本信息

  • 批准号:
    EP/K041150/1
  • 负责人:
  • 金额:
    $ 52.94万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

The exploitation of plasmonics to control light at the nanoscale is an exciting prospect, but suffers from a serious bottle-neck, that of losses due to absorption. Plasmonics involves using nanostructured metallic materials to manipulate light deep into the sub-wavelength regime. The same metals that allow this unprecedented level of control also absorb some of the light, and it is this absorption that is at the root of the problem. The addition of gain materials is widely seen as one of the few ways to overcome these losses. However, progress is slow, the underlying physics is still far from clear. In this project we will conduct a series of novel experiments to establish the foundations of a proper understanding of the interaction between plasmonics light amplifying materials. Our longer term aim is to provide the understanding that will be needed if the absorption bottleneck is to be overcome, thereby allowing the full power of plasmonics to be unleashed.Just as a bell can be struck to produce a certain ringing note, so light impinging on a metallic nanoparticle can make the electrons in the metal ring. This ringing mode, known as a plasmon mode, occurs at optical frequencies and is at the heart of plasmonics. Just as a ringing bell has a certain note, the ringing electrons interact strongly with light of a certain colour, the specific colour depending on the size, shape and the optical environment around the particle. Crucially, the motion of the electrons binds the light tightly to the surface of the particle, confining and enhancing the light in nanoscale regions well beyond the diffraction limit, where it may interact very strongly with molecules, quantum dots etc.. Much excitement has been generated in the past couple of years by demonstrations of lasing using plasmonic (metallic) nano-cavities. Metallic nanoparticles that support plasmon modes were coated with dye molecules that, when excited, can amplify light. The strong interaction between plasmons and molecules means that when one of the excited molecules releases its stored energy, rather than emerging as a photon, the energy instead appears in the form of a plasmon mode associated with the metal nanoparticle. This plasmon may then trigger other excited molecules to release their energy as plasmons, leading to an avalanche of plasmons.Despite the excitement generated by this recent demonstration, the underlying physics is poorly understood. An alternative lasing paradigm - random lasing - offers a fresh approach to exploring this new field. In a traditional laser amplification is achieved through the use of a cavity; by contrast, in a random laser, multiple scattering from a random arrangement of nanoparticles embedded in the gain material is used to control the amplification. Random lasing offers a straightforward way to probe some of the key questions about how plasmon modes and gain materials interact. In this project we will synthesize a range of dielectric and metallic nanoparticles, including some doped with light-emitting molecules capable of amplifying light. We will then make colloids from these particles, and will investigate how the random lasing behaviour they exhibit depends on, and may be controlled by, the plasmon resonances associated with the metallic nanoparticles. Comparison of our results with appropriate theoretical models will allow us to explore the underlying physics. The focus of our investigation will be to better understand how gain materials modify plasmon modes. Our results will be of interest to a wide range of scientific and technological communities including; nanophotonics, metamaterials, light scattering, optical communications, imaging and bio-photonics.
对纳米级控制光的剥削是一个令人兴奋的前景,但由于吸收而遭受了严重的瓶颈损失。血浆涉及使用纳米结构的金属材料来操纵深入次波长状态的光。允许这种前所未有的控制水平的同样的金属也吸收了一些光,正是这种吸收才是问题的根源。增加增益材料被广泛视为克服这些损失的几种方法之一。但是,进步很慢,基础物理学仍然远非清晰。在这个项目中,我们将进行一系列新型实验,以确定对等离子体光放大材料之间相互作用的正确理解的基础。我们的长期目的是提供理解,如果要克服吸收瓶颈,则需要释放等离子间的全部功能。就可以敲出铃铛以产生一定的铃声,因此在金属环上的金属纳米颗粒上的光损害可以在金属环中产生电子。这种称为等离子体模式的铃声发生在光频率上,是等离子原料的核心。正如铃声有一定的音符一样,铃声电子与一定颜色的光强烈相互作用,具体颜色取决于粒子周围的大小,形状和光学环境。至关重要的是,电子的运动将光紧密结合到粒子的表面,限制和增强了纳米级区域的光线,远远超出了衍射极限,在这种情况下,它可能与分子,量子点等相互作用。将支持等离子体模式的金属纳米颗粒涂有染料分子,这些分子在激发时会放大光。等离子与分子之间的强相互作用意味着,当一个激发分子释放其存储的能量而不是作为光子出现时,能量以与金属纳米颗粒相关的等离子模式的形式出现。然后,该等离子体可能会触发其他激发分子以释放其作为等离子的能量,从而导致雪崩。另一种激光范式 - 随机激光 - 为探索这个新领域提供了一种新的方法。在传统的激光器中,通过使用腔体实现;相比之下,在随机激光器中,嵌入在增益材料中的纳米颗粒的随机排列中的多个散射用于控制扩增。随机激光提供了一种直接的方法,可以探究有关等离子模式和获得材料如何相互作用的一些关键问题。在这个项目中,我们将合成一系列介电和金属纳米颗粒,其中包括一些能够放大光的发光分子。然后,我们将从这些颗粒中制成胶体,并将研究其表现出的随机激光行为如何取决于和可能由与金属纳米颗粒相关的等离子体共振。将结果与适当的理论模型进行比较将使我们能够探索潜在的物理学。我们调查的重点将是更好地了解获取材料如何修改等离子体模式。我们的结果将吸引各种科学和技术社区,包括:纳米植物,超材料,光散射,光学通信,成像和生物光谱学。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Plasmonic surface lattice resonances in arrays of metallic nanoparticle dimers
  • DOI:
    10.1088/2040-8978/18/3/035005
  • 发表时间:
    2016-03-01
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Humphrey, A. D.;Barnes, W. L.
  • 通讯作者:
    Barnes, W. L.
Surface Lattice Resonances in Plasmonic Arrays of Asymmetric Disc Dimers
  • DOI:
    10.1021/acsphotonics.5b00727
  • 发表时间:
    2016-04-01
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Humphrey, Alastair D.;Meinzer, Nina;Barnes, William L.
  • 通讯作者:
    Barnes, William L.
Plasmonic Surface Lattice Resonances: A Review of Properties and Applications.
  • DOI:
    10.1021/acs.chemrev.8b00243
  • 发表时间:
    2018-06-27
  • 期刊:
  • 影响因子:
    62.1
  • 作者:
    Kravets VG;Kabashin AV;Barnes WL;Grigorenko AN
  • 通讯作者:
    Grigorenko AN
Excitonic surface lattice resonances
激子表面晶格共振
  • DOI:
    10.1088/2040-8978/18/8/085004
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Humphrey A
  • 通讯作者:
    Humphrey A
Hybridized exciton-polariton resonances in core-shell nanoparticles
核-壳纳米颗粒中的混合激子-极化子共振
  • DOI:
    10.48550/arxiv.1609.04932
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Gentile M
  • 通讯作者:
    Gentile M
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

William Barnes其他文献

THE PAN-PACIFIC ENTOMOLOGIST
泛太平洋昆虫学家
  • DOI:
    10.3956/panp
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    William Barnes;Illinois F. H. BENJAMIN Decatur
  • 通讯作者:
    Illinois F. H. BENJAMIN Decatur
Participant satisfaction with group and individual components of Adolescent Impact: a secondary prevention intervention for HIV-positive youth
参与者对青少年影响的团体和个人组成部分的满意度:针对艾滋病毒阳性青少年的二级预防干预
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    R. Lagrange;S. Abramowitz;L. Koenig;William Barnes;L. C. Conner;D. Moschel
  • 通讯作者:
    D. Moschel
Lumbar Laminectomy and Associated Ureteral Injury
  • DOI:
    10.1016/s0022-5347(17)62229-8
  • 发表时间:
    1969-12-01
  • 期刊:
  • 影响因子:
  • 作者:
    Howard B. Kern;William Barnes;Maxwell Malament
  • 通讯作者:
    Maxwell Malament
Food Security in the Contemporary World: Making Security Sustainable
当代世界的粮食安全:使安全可持续
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
    William Barnes
  • 通讯作者:
    William Barnes
A high-throughput COPD bronchosphere model for disease-relevant phenotypic compound screening
用于疾病相关表型化合物筛选的高通量 COPD 支气管球模型
  • DOI:
    10.1101/2022.12.16.520302
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    P. Beri;Young Jae Woo;Katie Schierenbeck;Kaisheng Chen;S. W. Barnes;Olivia Ross;Douglas Krutil;Doug Quackenbush;Bin Fang;John Walker;William Barnes;E. Toyama
  • 通讯作者:
    E. Toyama

William Barnes的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('William Barnes', 18)}}的其他基金

Transparent organic electronics based on graphene
基于石墨烯的透明有机电子器件
  • 批准号:
    EP/J000396/1
  • 财政年份:
    2011
  • 资助金额:
    $ 52.94万
  • 项目类别:
    Research Grant
PCR Laboratory for Undergraduate Teaching of Molecular Biology/Biotechnology
分子生物学/生物技术本科教学PCR实验室
  • 批准号:
    9350892
  • 财政年份:
    1993
  • 资助金额:
    $ 52.94万
  • 项目类别:
    Standard Grant

相似国自然基金

茶黄素TF3通过血浆激肽释放酶(PK)调控AMPK信号通路改善非酒精性脂肪肝病的作用机制研究
  • 批准号:
    81903319
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
血浆激肽释放酶酶切NMDA受体1促进糖尿病视网膜神经损伤及其机制研究
  • 批准号:
    81670744
  • 批准年份:
    2016
  • 资助金额:
    58.0 万元
  • 项目类别:
    面上项目
血浆激肽释放酶-激肽系统对内皮祖细胞的调控在血管稳态失衡中的作用与机制
  • 批准号:
    91539122
  • 批准年份:
    2015
  • 资助金额:
    75.0 万元
  • 项目类别:
    重大研究计划
活化型高分子激肽原抑制内皮祖细胞活性在关节炎动脉粥样硬化发展中的作用
  • 批准号:
    81301534
  • 批准年份:
    2013
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
血浆胆囊收缩素生物测定法的建立及饮食对其释放的影响
  • 批准号:
    38800012
  • 批准年份:
    1988
  • 资助金额:
    3.5 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Design and fabrication of a hybrid metamaterial scanning probe for tunable tip-enhanced nanospectroscopy
用于可调谐尖端增强纳米光谱的混合超材料扫描探针的设计和制造
  • 批准号:
    23K13640
  • 财政年份:
    2023
  • 资助金额:
    $ 52.94万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Multimodal Label-Free Nanosensor for Single Virus Characterization and Content Analysis
用于单一病毒表征和内容分析的多模式无标记纳米传感器
  • 批准号:
    10641529
  • 财政年份:
    2023
  • 资助金额:
    $ 52.94万
  • 项目类别:
Next-generation optical nanoprobes: From quantum biosensing to cellular monitoring
下一代光学纳米探针:从量子生物传感到细胞监测
  • 批准号:
    10622691
  • 财政年份:
    2023
  • 资助金额:
    $ 52.94万
  • 项目类别:
UV Plasmon-Enhanced Chiroptical Spectroscopy of Membrane-Binding Proteins
膜结合蛋白的紫外等离子增强手性光谱
  • 批准号:
    10680969
  • 财政年份:
    2023
  • 资助金额:
    $ 52.94万
  • 项目类别:
A miniaturized neural network enabled nanoplasmonic spectroscopy platform for label-free cancer detection in biofluids
微型神经网络支持纳米等离子体光谱平台,用于生物流体中的无标记癌症检测
  • 批准号:
    10658204
  • 财政年份:
    2023
  • 资助金额:
    $ 52.94万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了