Very Low Field 2.35 T Solid State NMR Console and Fast MAS NMR Probe for the Study of Paramagnetic Materials Systems

用于研究顺磁性材料系统的极低场 2.35 T 固态 NMR 控制台和快速 MAS NMR 探头

基本信息

  • 批准号:
    EP/K024418/1
  • 负责人:
  • 金额:
    $ 8.28万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

The aim of this proposal is to expand the capability base that solid state NMR community has at its disposal so that more materials and chemistry systems can be effectively studied with this technique. Solid state NMR usually confines itself to the study of diamagnetic materials and compounds; i.e. systems that do not possess unpaired electrons in their electronic structure. Many modern materials and chemical systems being developed possess transition metals and/or rare earth species as part of the elemental composition; these introduce unpaired electrons into these systems and thus promote paramagnetic characteristics which are incompatible with the conventional NMR methodology. Our traditional mindset of how we approach the typical NMR measurement needs to be adjusted as our typical drive to higher external magnetic field strengths is counterproductive in this case. The electron polarisation that gives rise to paramagnetic anisotropies and shifts scales linearly with magnetic field, and these effects greatly detract from conventional NMR data thus masking the information that is normally sought. Severe cases of paramagnetism can preclude the NMR measurement of some systems completely.The most direct way to address this solid state NMR challenge is to attempt measurements in a much reduced (rather than increased) magnetic field, and to spin the sample at very high MAS frequencies. This low field/fast MAS methodology maximises the chance for NMR data to be elucidated from these systems, however these types of NMR spectrometers are very rare commodities worldwide. While many thousand NMR instruments exist throughout the world at fields of 7.05 T (300 MHz for 1H) and above, only a handful of operational low field spectrometers exist to undertake these type of measurements; furthermore, the UK is not well catered for in this field of spectroscopy apart from very limited proof-of-concept pilot studies that have demonstrated this idea. This new capability will be as easy to operate as conventional solid state NMR instrumentation and no specific additional training is required to enable its usage for data acquisition. The impact of this methodology is expected to influence the fields of catalysis and energy materials (battery materials, solid oxide and H conduction fuel cells, hydrogen storage materials, supported metal nanoparticles systems, zeolites, nuclear waste glasses etc.), general organometallc and inorganic chemistry, and the emerging field of medical engineering (rare earth doped biomaterials for oncology and blood vessel growth stimulation applications). It is also expected that this methodology will bridge across to established techniques such as EPR, and emerging technologies such as DNP, both of which employ different strategies for the manipulation of the paramagnetic interaction. These relationships are expected to stimulate a more vibrant magnetic resonance community that will be capable of collaboratively tackling the challenging research issues that confront the UK. Academic collaborators at Cambridge, Birmingham, Imperial, Queen Mary, Kent, UCL and Lancaster, and industrial partners such as Johnson Matthey and Unilever are all acutely aware of these new solid state NMR possibilities and flexibility that this methodology offers, and they eagerly await the improvements to the measurement technology that a low field/fast MAS combination can offer.The specific objectives that shape this proposal are:(a) to deliver a shared low-field/fast MAS solid state NMR resource to the UK magnetic resonance community that will augment the current UK suite of solid state NMR instrumentation in existence,(b) to put in place a state-of-the-art solid state NMR console and appropriate fast MAS probe technology capable of delivering the most modern experiments,(c) to align this methodology with established characterisation technologies such as EPR and emerging experimental initiatives such as DNP.
该提案的目的是扩大固态核磁共振界的能力基础,以便可以利用该技术有效地研究更多的材料和化学系统。固态核磁共振通常局限于抗磁性材料和化合物的研究;即电子结构中不具有不成对电子的系统。许多正在开发的现代材料和化学系统都含有过渡金属和/或稀土物质作为元素成分的一部分;这些将不成对的电子引入到这些系统中,从而促进了与传统核磁共振方法不相容的顺磁特性。我们对如何进行典型 NMR 测量的传统思维方式需要进行调整,因为在这种情况下,我们通常追求更高的外部磁场强度会适得其反。产生顺磁各向异性并随磁场线性变化的电子极化,这些效应极大地偏离了传统核磁共振数据,从而掩盖了通常寻找的信息。严重的顺磁性情况可能会完全妨碍某些系统的 NMR 测量。解决固态 NMR 挑战的最直接方法是尝试在大大减少(而不是增加)的磁场中进行测量,并在非常高的 MAS 下旋转样品频率。这种低场/快速 MAS 方法最大限度地提高了从这些系统中阐明 NMR 数据的机会,但这些类型的 NMR 波谱仪在全球范围内非常稀有。虽然全世界有数千台 7.05 T(1H 为 300 MHz)及以上场的 NMR 仪器,但只有少数可用的低场光谱仪可以进行此类测量;此外,除了证明这一想法的概念验证试点研究非常有限之外,英国在光谱学领域并没有得到很好的满足。这项新功能将与传统固态 NMR 仪器一样易于操作,并且无需特定的额外培训即可使用其进行数据采集。该方法的影响预计将影响催化和能源材料(电池材料、固体氧化物和氢传导燃料电池、储氢材料、负载金属纳米颗粒系统、沸石、核废玻璃等)、通用有机金属和无机材料等领域。化学和新兴的医学工程领域(用于肿瘤学和血管生长刺激应用的稀土掺杂生物材料)。预计这种方法将跨越 EPR 等现有技术和 DNP 等新兴技术,这两种技术都采用不同的策略来操纵顺磁相互作用。这些关系预计将刺激一个更有活力的磁共振社区,该社区将能够合作解决英国面临的具有挑战性的研究问题。剑桥大学、伯明翰大学、帝国理工学院、玛丽女王大学、肯特大学、伦敦大学学院和兰开斯特大学的学术合作者以及庄信万丰和联合利华等工业合作伙伴都敏锐地意识到这种新的固态 NMR 的可能性和灵活性,他们热切地等待着这种方法的出现。低场/快速 MAS 组合可以提供的测量技术的改进。形成该提案的具体目标是:(a) 向英国磁共振界提供共享的低场/快速 MAS 固态 NMR 资源这将增强英国现有的固态 NMR 仪器套件,(b) 部署最先进的固态 NMR 控制台和能够提供最现代实验的适当的快速 MAS 探针技术,(c )使该方法与 EPR 等成熟的表征技术和 DNP 等新兴实验计划保持一致。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Impact of Intergrain Phases on the Ionic Conductivity of the LAGP Solid Electrolyte Material Prepared by Spark Plasma Sintering.
  • DOI:
    10.1021/acsami.3c03839
  • 发表时间:
    2023-08
  • 期刊:
  • 影响因子:
    9.5
  • 作者:
    Sorina Creţu;David G. Bradley;Liye Feng;O. U. Kudu;L. Nguyen;Tuan‐Tu Nguyen;A. Jamali;J. Chotard;V. Seznec;J. Hanna;Arnaud Demortière;M. Duchamp
  • 通讯作者:
    Sorina Creţu;David G. Bradley;Liye Feng;O. U. Kudu;L. Nguyen;Tuan‐Tu Nguyen;A. Jamali;J. Chotard;V. Seznec;J. Hanna;Arnaud Demortière;M. Duchamp
In Situ Cross-Linking of Silane Functionalized Reduced Graphene Oxide and Low-Density Polyethylene
  • DOI:
    10.1021/acsapm.0c00115
  • 发表时间:
    2020-04
  • 期刊:
  • 影响因子:
    5
  • 作者:
    S. S. Abbas-S.;Gregory J Rees;G. Patias;C. Dancer;J. Hanna;T. McNally
  • 通讯作者:
    S. S. Abbas-S.;Gregory J Rees;G. Patias;C. Dancer;J. Hanna;T. McNally
Cold sintering of bioglass and bioglass/polymer composites
生物玻璃和生物玻璃/聚合物复合材料的冷烧结
Cysteamine functionalised reduced graphene oxide modification of maleated poly(propylene)
  • DOI:
    10.1016/j.polymer.2020.122750
  • 发表时间:
    2020-08-26
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Abbas, Syeda S.;Kelly, Nicole L.;McNally, Tony
  • 通讯作者:
    McNally, Tony
Crystal Chemistry of Vanadium-Bearing Ellestadite Waste Forms.
  • DOI:
    10.1021/acs.inorgchem.8b01160
  • 发表时间:
    2018-07
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Yanan Fang;S. Page;Gregory J Rees;M. Avdeev;J. Hanna;T. White
  • 通讯作者:
    Yanan Fang;S. Page;Gregory J Rees;M. Avdeev;J. Hanna;T. White
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Hanna其他文献

PEComa With MITF Overexpression: Clinicopathologic and Molecular Analysis of a Series of 36 Cases.
MITF 过度表达的 PEComa:36 例系列的临床病理学和分子分析。
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    John Hanna;Eleanor Russell;Esther Baranov;D. Pissaloux;Yvonne Y Li;F. Tirode;A. de la Fouchardière;C. Fletcher
  • 通讯作者:
    C. Fletcher
Hashimoto thyroiditis in Lebanon: Fibrinogen levels increase and redox homeostasis alteration in euthyroid patients and detection of a new SAA1 “ε” isoform (V52-V57)
黎巴嫩的桥本甲状腺炎:甲状腺功能正常的患者中纤维蛋白原水平升高和氧化还原稳态改变,并检测到新的 SAA1“ε”亚型 (V52-V57)
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Ibrahim;Alexandre Chaib;Dania Sawan;Rita Bou Saab;John Hanna;R. Jounblat;M. Medlej‐Hashim
  • 通讯作者:
    M. Medlej‐Hashim
Self-Healing Concrete Techniques and Technologies and Applications
  • DOI:
    10.21926/rpm.2401006
  • 发表时间:
    2024-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Hanna
  • 通讯作者:
    John Hanna
Spg5 Regulates the Proteasome in Quiescence
Spg5 调节静止状态的蛋白酶体
  • DOI:
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    0
  • 作者:
    John Hanna;D. Waterman;Monica G. Boselli;D. Finley
  • 通讯作者:
    D. Finley
MAML2 Gene Rearrangement Occurs in Nearly All Hidradenomas: A Reappraisal in a Series of 20 Cases
几乎所有汗腺瘤中都会发生 MAML2 基因重排:对 20 个病例系列的重新评估

John Hanna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Hanna', 18)}}的其他基金

Advanced Acrylate-Based Hybrid Materials for Osteochondral Regeneration
用于骨软骨再生的先进丙烯酸酯基混合材料
  • 批准号:
    EP/M020002/1
  • 财政年份:
    2015
  • 资助金额:
    $ 8.28万
  • 项目类别:
    Research Grant
Tailoring the Atomic Structure of Advanced Sol-Gel Materials for Regenerative Medicine Through High-Performance Computing
通过高性能计算定制用于再生医学的先进溶胶-凝胶材料的原子结构
  • 批准号:
    EP/M004511/1
  • 财政年份:
    2014
  • 资助金额:
    $ 8.28万
  • 项目类别:
    Research Grant
Functional materials derived from the schafarzikite mineral framework
源自菱铁矿矿物骨架的功能材料
  • 批准号:
    EP/L014076/1
  • 财政年份:
    2014
  • 资助金额:
    $ 8.28万
  • 项目类别:
    Research Grant
Oxyanion doping strategies for Solid Oxide Fuel Cell Materials
固体氧化物燃料电池材料的氧离子掺杂策略
  • 批准号:
    EP/I004114/1
  • 财政年份:
    2011
  • 资助金额:
    $ 8.28万
  • 项目类别:
    Research Grant
Synthesis and NMR Studies of Electron and Proton Conducting Mesoporous Nb, Ta and Ti Oxide Composites for Alternative Energy Applications
用于替代能源应用的电子和质子传导介孔 Nb、Ta 和 Ti 氧化物复合材料的合成和核磁共振研究
  • 批准号:
    EP/I004734/1
  • 财政年份:
    2011
  • 资助金额:
    $ 8.28万
  • 项目类别:
    Research Grant
GLASSY & LIQUID NETWORKS: DEFORMABILITY & MANIPULATION
玻璃
  • 批准号:
    EP/G009511/1
  • 财政年份:
    2009
  • 资助金额:
    $ 8.28万
  • 项目类别:
    Research Grant
Developing Wide Line Solid State NMR as a Novel Analytical Approach to understand Metals in Catalytic Technology for Fuel Cells
开发宽线固态核磁共振作为一种新颖的分析方法来了解燃料电池催化技术中的金属
  • 批准号:
    EP/G00367X/1
  • 财政年份:
    2008
  • 资助金额:
    $ 8.28万
  • 项目类别:
    Research Grant

相似国自然基金

高功率激光驱动低β磁重联中磁岛对电子加速影响的研究
  • 批准号:
    12305275
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PUFAs通过SREBPs提高凡纳滨对虾低盐适应能力的机制研究
  • 批准号:
    32303021
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
催化CO2加氢为低碳烯烃的介孔碳限域Fe系催化剂的可控构筑与调控机制研究
  • 批准号:
    22378345
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于射频指纹物理特征的低轨卫星物联网增强安全认证技术研究
  • 批准号:
    62302082
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
低强度聚焦超声调控前扣带回皮层抑制中枢敏化缓解慢性神经病理性疼痛的机制研究
  • 批准号:
    82360457
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Development of size-selective capture and release membranes for purification of extracellular vesicles
开发用于纯化细胞外囊泡的尺寸选择性捕获和释放膜
  • 批准号:
    10631914
  • 财政年份:
    2022
  • 资助金额:
    $ 8.28万
  • 项目类别:
Development of size-selective capture and release membranes for purification of extracellular vesicles
开发用于纯化细胞外囊泡的尺寸选择性捕获和释放膜
  • 批准号:
    10432803
  • 财政年份:
    2022
  • 资助金额:
    $ 8.28万
  • 项目类别:
Functional mechanisms underlying hippocampal damage and behavioral abnormalities caused by perinatal hyperoxia
围产期高氧引起海马损伤和行为异常的功能机制
  • 批准号:
    9223761
  • 财政年份:
    2016
  • 资助金额:
    $ 8.28万
  • 项目类别:
Functional mechanisms underlying hippocampal damage and behavioral abnormalities caused by perinatal hyperoxia
围产期高氧引起海马损伤和行为异常的功能机制
  • 批准号:
    9125696
  • 财政年份:
    2016
  • 资助金额:
    $ 8.28万
  • 项目类别:
RetiVue WF - A Handheld, High-Resolution, Wide-field Retinal Imager
RetiVue WF - 手持式高分辨率宽视场视网膜成像仪
  • 批准号:
    9148225
  • 财政年份:
    2013
  • 资助金额:
    $ 8.28万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了