BioEngineering from first principles.

生物工程从第一原理开始。

基本信息

  • 批准号:
    EP/I016589/1
  • 负责人:
  • 金额:
    $ 25.71万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

The research challenge is to understand the principles that control cell-surface and cell-cell interactions given the enormous variety of macromolecular structures produced by microbial cells and the complexity of their chemical and physical influences on binding interactions. We will predict attachment using computational models and gain understanding why extracellular DNA promotes or inhibits attachment under specific conditions. This is a major challenge with huge rewards if it can be met. A predictive capability of cell attachment would enable new methods of analysis and design in the fields of environmental engineering, process engineering and biomedical engineering.To tackle this challenge, we have recruited multidisciplinary expertise to combine theoretical and experimental techniques from the fields of computational chemistry, surface and polymer physics, molecular biology, polymer chemistry, engineering microbiology, analytical chemistry, X-Ray and vibrational spectroscopy and environmental engineering science.We propose to use computational chemistry techniques for simulation of cell walls, to characterise the behaviour of their individual chemical constituents, and to estimate the physical-chemical interactions that occur with specified solid surfaces. Looking 1-2 decades ahead, the aim is to develop computational methods sufficiently to allow the required interactions to be designed, identify the macromolecular structures necessary for these interactions to occur and identify the necessary gene sequences for their synthesis. This Feasibility Account study will launch theoretical chemistry into the specific challenge of tackling extracellular DNA (eDNA) binding on cells and minerals as one identified mechanism in biofilm formation. The outcome will be an evaluation of this combined approach between multidisciplinary experimentation and theoretical simulation as a case study for predicting cell attachment and growth. With the computational techniques, we shall investigate the binding of nucleic acid sequences to the surfaces using molecular dynamics simulations. Experimentally, we will first characterise eDNA produced by biofilm-forming microbes that we have isolated from environmental samples. We will then remove eDNA from biofilm-forming cells and replace it with synthetic DNA to start to quantify the relationship between the properties of eDNA and cell attachment. This 'synthetic' approach will allow us to vary systematically eDNA length, sequence and concentration and quantify cell attachment to model oxide surfaces such as negatively charged silica and positively charged alumina under defined ionic medium conditions. We will explore how eDNA is arranged on the cell surface and substratum using atomic force microscopy and fluorescence techniques, and we shall explore the use of methods that break the diffraction limit for optical resolution such as SNOM (Scanning Near Field Optical Microscopy) which, to our knowledge, has never been applied to this area. The potential for engineering applications is immense. We anticipate that virtually all fields of biotechnology would potentially profit. We propose to assess this breadth of promise by bringing a wide range of engineering experts together with the project team in a sand pit that will be held 3 months before the project end. We will hold a 2-day workshop to present our results and develop a roadmap for moving this forward as a research area and for practical application. Participants will evaluate our results, identify areas of opportunity for engineering applications, and assess the promise for generalisation across the broad field of BioEngineering through systematic application of our approach.
鉴于微生物细胞产生的大分子结构的多样性及其对结合相互作用的化学和物理影响的复杂性,研究的挑战是了解控制细胞表面和细胞与细胞相互作用的原理。我们将使用计算模型预测附着,并了解为什么细胞外 DNA 在特定条件下促进或抑制附着。这是一项重大挑战,如果能够实现,将会带来巨大的回报。细胞附着的预测能力将使环境工程、过程工程和生物医学工程领域的新分析和设计方法成为可能。为了应对这一挑战,我们招募了多学科专业知识,将计算化学领域的理论和实验技术结合起来,表面和聚合物物理学、分子生物学、聚合物化学、工程微生物学、分析化学、X射线和振动光谱学以及环境工程科学。我们建议使用计算化学技术来模拟细胞壁,以表征其各个化学成分的行为,并估计物理化学与特定固体表面发生的相互作用。展望未来 1-2​​ 年,我们的目标是开发足够的计算方法,以设计所需的相互作用,确定发生这些相互作用所需的大分子结构,并确定合成所需的基因序列。这项可行性研究将利用理论化学来解决细胞外 DNA (eDNA) 与细胞和矿物质的结合这一特定挑战,作为生物膜形成的一种已确定机制。结果将是对多学科实验和理论模拟之间的这种组合方法的评估,作为预测细胞附着和生长的案例研究。通过计算技术,我们将使用分子动力学模拟研究核酸序列与表面的结合。在实验上,我们将首先表征从环境样本中分离出的生物膜形成微生物产生的 eDNA。然后,我们将从生物膜形成细胞中去除 eDNA,并用合成 DNA 替换它,以开始量化 eDNA 特性与细胞附着之间的关系。这种“合成”方法将使我们能够系统地改变 eDNA 长度、序列和浓度,并量化细胞在特定离子介质条件下对模型氧化物表面(例如带负电的二氧化硅和带正电的氧化铝)的附着。我们将探索如何使用原子力显微镜和荧光技术将 eDNA 排列在细胞表面和基质上,并且我们将探索使用突破光学分辨率衍射极限的方法,例如 SNOM(扫描近场光学显微镜),我们的知识,从未应用到这个领域。工程应用潜力巨大。我们预计几乎所有生物技术领域都有可能获利。我们建议通过将广泛的工程专家与项目团队聚集在一个沙坑中来评估这种前景,该沙坑将于项目结束前 3 个月举行。我们将举办为期 2 天的研讨会,展示我们的成果,并制定路线图,推动这一研究领域的发展和实际应用。参与者将评估我们的结果,确定工程应用的机会领域,并通过系统应用我们的方法来评估在生物工程广泛领域的推广前景。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Single cell Raman spectroscopy for cell sorting and imaging.
用于细胞分选和成像的单细胞拉曼光谱。
  • DOI:
    10.1016/j.copbio.2011.11.019
  • 发表时间:
    2012-02-01
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Mengqiu Li;Jian Xu;M. Romero;S. Banwart;Wei E. Huang
  • 通讯作者:
    Wei E. Huang
Crystal structure and non-stoichiometry of cerium brannerite: Ce0.975Ti2O5.95
铈镁铁矿的晶体结构和非化学计量:Ce0.975Ti2O5.95
  • DOI:
    http://dx.10.1016/j.jssc.2012.03.057
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Stennett M
  • 通讯作者:
    Stennett M
The Role of Extracellular DNA in Microbial Attachment to Oxidized Silicon Surfaces in the Presence of Ca2+ and Na.
Ca2 和 Na 存在下细胞外 DNA 在微生物附着到氧化硅表面中的作用。
Energetics of Donor-Doping, Metal Vacancies, and Oxygen-Loss in A-Site Rare-Earth-Doped BaTiO 3
A 位稀土掺杂 BaTiO 3 中施主掺杂、金属空位和氧损失的能量学
  • DOI:
    http://dx.10.1002/adfm.201203147
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Freeman C
  • 通讯作者:
    Freeman C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Steven Banwart其他文献

Will the circle be unbroken? The climate mitigation and sustainable development given by a circular economy of carbon, nitrogen, phosphorus and water
  • DOI:
    10.1039/d2su00121g
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Patrick McKenna;Fiona Zakaria;Jeremy Guest;Barbara Evans;Steven Banwart
  • 通讯作者:
    Steven Banwart

Steven Banwart的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Steven Banwart', 18)}}的其他基金

Assessing Agroecology Benefits and Novel Chemical and AMR Risks in Adopting a Sanitation-Agriculture Circular Economy
评估采用卫生农业循环经济的农业生态效益以及新型化学品和抗生素耐药性风险
  • 批准号:
    BB/X005879/1
  • 财政年份:
    2022
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Research Grant
MIDST-CZ: Maximising Impact by Decision Support Tools for sustainable soil and water through UK-China Critical Zone science
MIDST-CZ:通过中英关键区域科学,最大限度地发挥可持续土壤和水决策支持工具的影响
  • 批准号:
    NE/S009124/1
  • 财政年份:
    2019
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Research Grant
Using Critical Zone Science to Enhance Soil Fertility and Improve Ecosystem Services for Peri-Urban Agriculture in China
利用关键区域科学提高土壤肥力并改善中国城郊农业的生态系统服务
  • 批准号:
    NE/N007514/1
  • 财政年份:
    2016
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Research Grant
SoS RARE: Multidisciplinary research towards a secure and environmentally sustainable supply of critical rare earth elements (Nd and HREE)
SoS RARE:多学科研究,致力于关键稀土元素(Nd 和 HREE)的安全和环境可持续供应
  • 批准号:
    NE/M011232/2
  • 财政年份:
    2016
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Research Grant
Using Critical Zone Science to Enhance Soil Fertility and Improve Ecosystem Services for Peri-Urban Agriculture in China
利用关键区域科学提高土壤肥力并改善中国城郊农业的生态系统服务
  • 批准号:
    NE/N007514/2
  • 财政年份:
    2016
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Research Grant
SoS RARE: Multidisciplinary research towards a secure and environmentally sustainable supply of critical rare earth elements (Nd and HREE)
SoS RARE:多学科研究,致力于关键稀土元素(Nd 和 HREE)的安全和环境可持续供应
  • 批准号:
    NE/M011232/1
  • 财政年份:
    2015
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Research Grant
GOING UNDERGROUND: HUMAN PATHOGENS IN THE SOIL-WATER ENVIRONMENT
深入地下:土壤-水环境中的人类病原体
  • 批准号:
    NE/E008992/1
  • 财政年份:
    2007
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Research Grant
GOING UNDERGROUND: HUMAN PATHOGENS IN THE SOIL-WATER ENVIRONMENT
深入地下:土壤-水环境中的人类病原体
  • 批准号:
    NE/E008143/1
  • 财政年份:
    2007
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Research Grant
Biologically-Mediated Weathering of minerals from Nanometre Scale to Environmental Systems.
从纳米尺度到环境系统的矿物生物介导风化。
  • 批准号:
    NE/C004566/1
  • 财政年份:
    2006
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Research Grant
Biologically-Mediated Weathering of minerals from Nanometre Scale to Environmental Systems.
从纳米尺度到环境系统的矿物生物介导风化。
  • 批准号:
    NE/C521044/1
  • 财政年份:
    2006
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Research Grant

相似国自然基金

准一维铬砷基超导材料电子关联动力学性质的第一性原理研究
  • 批准号:
    12304175
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于第一性原理训练深度势研究光电催化材料中的极化子问题
  • 批准号:
    12304216
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于第一性原理精度分子动力学的过冷水反常物理性质研究
  • 批准号:
    12374217
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于第一性原理设计制备高性能钨合金的基础研究
  • 批准号:
    52371091
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于第一性原理的含酚类生物再生剂热裂解逆向调控与代替老化再生机理
  • 批准号:
    52308445
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Real-Time First-Principles Approach to Understanding Many-Body Effects on High Harmonic Generation in Solids
职业:实时第一性原理方法来理解固体高次谐波产生的多体效应
  • 批准号:
    2337987
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Continuing Grant
Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
利用第一原理计算解决 X 射线光电子能谱中的峰分配问题
  • 批准号:
    EP/Y037022/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Research Grant
BETTERXPS - Tackling the Peak Assignment Problem in X-ray Photoelectron Spectroscopy with First Principles Calculations
BETTERXPS - 通过第一原理计算解决 X 射线光电子能谱中的峰分配问题
  • 批准号:
    EP/Y036433/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Research Grant
SHAIC1: Towards Scalable Human-AI Coordination from First Principles
SHAIC1:从第一原则迈向可扩展的人类与人工智能协调
  • 批准号:
    EP/Y028481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Research Grant
CAREER: First-Principles Discovery of Optically Excited States in Van der Waals Magnetic Structures
职业生涯:范德华磁结构中光激发态的第一原理发现
  • 批准号:
    2339995
  • 财政年份:
    2024
  • 资助金额:
    $ 25.71万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了