SANDPIT : Knots and Evolution - Topologically Driven Integrase Mutagenesis

SADPIT:结和进化 - 拓扑驱动的整合酶诱变

基本信息

  • 批准号:
    EP/H031367/1
  • 负责人:
  • 金额:
    $ 56.03万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2010
  • 资助国家:
    英国
  • 起止时间:
    2010 至 无数据
  • 项目状态:
    已结题

项目摘要

Since their discovery in the late 1960s, DNA knots and links have been found to play key roles in hosts of cellular processes. Because they are so ubiquitous all organisms have developed special proteins whose function is to help untie DNA knots and links. There are also other important proteins-- called recombinases -- that can alter the order of the sequence of the DNA basepairs. While the main function of recombinases is to rearrange the order of basepairs, in the process of doing this they often cause changes to DNA knotting or linking. For all these reasons molecular biologists became interested in learning about knots and links. Mathematicians have studied knots since the late 19th century for their own reasons, having nothing to do with DNA. Mathematically a knot is a one-dimensional object sitting inside 3-space, just like a standard circle does, but which we cannot smoothly deform to a standard circle. The mathematical theory of knots and links turns out to be very rich and surprisingly complicated, and intimately related to general 3-dimensional spaces, called 3-manifolds. (The study of these spaces is called 3-manifold topology.) Although the subject is very deep, some of the simplest questions remain unanswered: even today if you hand the world's top knot theorists two sufficiently complicated knots there is no known algorithm they can use to always tell whether one knot can be deformed into the other. Using tools from knot theory, mathematicians have been able to help biologists better understand the ways some proteins interact with DNA. For example, mathematicians have developed models of how the recombinase proteins reshuffle the DNA sequence. (1) These models can then predict various new features of these interactions - e.g. particular geometric configuration the DNA takes when the protein is attached or what biochemical pathway the reactions proceeds through. Site-specific recombinases mediate the reshuffling of the DNA sequence is important because of its key role in a wide variety of biological processes and is an important mechanism for bacterial evolution e.g. the recent emergence of multiple antibiotic resistance mediated by integrons. The integron integrases are unusual in that they undertake a wide variety of recombination reactions and it is anticipated that there will be a wide variety of topologically distinct products generated. The form of the knotted products will be indicative of the type and frequency of recombination reactions that have occurred. A number of phylogenetically and evolutionary distinct integrases will be mechanistically studied and the topology of their products determined in order to gain insight into integrase evolution, the fundamental mechanisms of integron driven genome plasticity and bacterial evolution. DNA can form very complicated knots. But only a small fraction of all possible very complicated knots appear as DNA knots. One issue has been (2) determining which knots can show up after a recombinase acts on an initial family of DNA knot configurations. In this proposal we will explore these two arenas (1) and (2) for a large and important family of proteins, the integrases. To answer these questions, we will use cutting-edge techniques from 3-manifold topology, combined with novel microbiological experiments. The answers will help us understand these important evolutionary agents more completely.
自1960年代后期发现它们以来,DNA结和链接已被发现在蜂窝过程的宿主中起关键作用。因为它们无处不在,所有生物都开发了特殊的蛋白质,其功能是帮助解开DNA结和链接。还有其他重要的蛋白质(称为重物组织酶)可以改变DNA碱基序列的顺序。重点组酶的主要功能是重新排列底底,但在这样做的过程中,它们通常会导致DNA打结或链接的变化。由于所有这些原因,分子生物学家对学习结和链接感兴趣。自19世纪后期以来,数学家出于自己的原因就开始了结,与DNA无关。从数学上讲,一个结是一个坐在3空间内部的一维对象,就像标准圆一样,但是我们无法将其平滑地变形到标准圆。结和链接的数学理论证明非常丰富且令人惊讶地复杂,并且与一般的三维空间密切相关,称为3个manifolds。 (对这些空间的研究称为3型拓扑。)尽管该主题非常深入,但一些最简单的问题仍然没有得到解答:即使在今天,如果您将世界顶级结理论家递给两个足够复杂的结两个,那么他们都无法使用一个已知的算法来始终告诉一个结的算法。使用结理论的工具,数学家已经能够帮助生物学家更好地了解某些蛋白质与DNA相互作用的方式。例如,数学家已经开发了重组酶蛋白如何改组DNA序列的模型。 (1)然后这些模型可以预测这些相互作用的各种新特征,例如当蛋白质附着或反应通过的生化途径时,DNA采取的特定几何构型会采用。位点特异性重组酶介导DNA序列的改组非常重要,因为它在各种生物学过程中的关键作用,并且是细菌进化的重要机制,例如近期通过整合元介导的多种抗生素耐药性的出现。积分集成酶是不寻常的,因为它们进行了多种重组反应,并且预计会产生各种各样的拓扑上不同的产品。打结的产品的形式将指示发生的重组反应的类型和频率。将对许多系统发育和进化不同的积分进行机械研究,并确定其产品的拓扑结构,以便深入了解整合酶进化,Integron驱动的基因组可塑性和细菌进化的基本机制。 DNA会形成非常复杂的结。但是,只有一小部分可能非常复杂的结出是DNA结。一个问题是(2)确定重组酶在初始的DNA结构族的家族上作用后可以显示哪些结。在此提案中,我们将探索这两个领域(1)和(2),以获取大型而重要的蛋白质家族,即综合酶。为了回答这些问题,我们将使用来自3个Manifold拓扑的尖端技术,并结合新型的微生物实验。答案将帮助我们更完全了解这些重要的进化剂。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Topological aspects of DNA function and protein folding.
DNA 功能和蛋白质折叠的拓扑方面。
Topology and Geometry of Biopolymers
生物聚合物的拓扑和几何结构
  • DOI:
    10.1090/conm/746/15003
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Buck D
  • 通讯作者:
    Buck D
Coherent band pathways between knots and links
Rational tangle surgery and Xer recombination on catenanes
  • DOI:
    10.2140/agt.2012.12.1183
  • 发表时间:
    2012-01-01
  • 期刊:
  • 影响因子:
    0.7
  • 作者:
    Darcy, Isabel K.;Ishihara, Kai;Shimokawa, Koya
  • 通讯作者:
    Shimokawa, Koya
The classification of rational subtangle replacements between rational tangles
理性缠结之间理性子缠结替换的分类
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Dorothy Buck其他文献

Lattice knots and links in tube regions
管区域中的格子结和链接
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dorothy Buck;Kai Ishihara;Matt Rathbun;and Koya Shimokawa;Makoto Ozawa and Koya Shimokawa;下川航也;下川航也;Koya Shimokawa;Koya Shimokawa;Koya Shimokawa
  • 通讯作者:
    Koya Shimokawa
DNAの部位特異的組換えと絡み目のバンド手術
DNA 位点特异性重组和系带手术
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dorothy Buck;Kai Ishihara;中野張;石原海
  • 通讯作者:
    石原海
トポロジーと高分子科学
拓扑与高分子科学
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dorothy Buck;Kai Ishihara;Matt Rathbun;and Koya Shimokawa;Makoto Ozawa and Koya Shimokawa;下川航也
  • 通讯作者:
    下川航也
動径基底関数による連続時間非線形フィルターの近似
用径向基函数逼近连续时间非线性滤波器
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dorothy Buck;Kai Ishihara;中野張
  • 通讯作者:
    中野張
The nomenclature of graphs and its application in polymer chemistry
图的命名及其在高分子化学中的应用
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dorothy Buck;Kai Ishihara;中野張;石原海;中野張;石原海
  • 通讯作者:
    石原海

Dorothy Buck的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Dorothy Buck', 18)}}的其他基金

The Mathematics of Medicine: A Public Discussion
医学数学:公开讨论
  • 批准号:
    EP/I017631/1
  • 财政年份:
    2011
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Research Grant
Functional Phylogenies
功能系统发育
  • 批准号:
    EP/H046364/1
  • 财政年份:
    2010
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Research Grant
DNA Knotting and Linking: Applications of 3-Manifold Topology to DNA-Protein Interactions
DNA 打结和连接:三流形拓扑在 DNA-蛋白质相互作用中的应用
  • 批准号:
    EP/G039585/1
  • 财政年份:
    2009
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Research Grant
The Geometry and Topology of DNA and DNA-Protein Interactions
DNA 和 DNA-蛋白质相互作用的几何和拓扑
  • 批准号:
    0102057
  • 财政年份:
    2001
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Fellowship Award

相似国自然基金

全范德华异质结中电场驱动离子迁移对磁性的调控研究
  • 批准号:
    52371245
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
高剂量离子注入超浅结的泵浦增强二次谐波测量原理与方法研究
  • 批准号:
    52375541
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
METTL3通过m6A依赖和非依赖途径共同调控JAK1/STAT3信号通路进而促进结直肠癌发生发展的机制研究
  • 批准号:
    82303118
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
黄土高原踩踏干扰后生物结皮退化过程及机理
  • 批准号:
    42377357
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
碳纳米管透明导电薄膜的光电共调制及其异质结器件研究
  • 批准号:
    62304163
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Geodesic arcs and surfaces for hyperbolic knots and 3-manifolds
双曲结和 3 流形的测地线弧和曲面
  • 批准号:
    DP240102350
  • 财政年份:
    2024
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Discovery Projects
Conference: Richmond Geometry Meeting: Knots, Moduli, and Strings
会议:里士满几何会议:结、模数和弦
  • 批准号:
    2240741
  • 财政年份:
    2023
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Standard Grant
Studies in knots and 3-manifolds
结和 3 流形的研究
  • 批准号:
    RGPIN-2020-05491
  • 财政年份:
    2022
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Discovery Grants Program - Individual
Connections between Algebra and Topology: Using algebraic number theory and TQFTs to study knots
代数与拓扑之间的联系:使用代数数论和 TQFT 研究纽结
  • 批准号:
    559329-2021
  • 财政年份:
    2022
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Doctoral
Knots, Disks, and Exotic Phenomena in Dimension 4
第 4 维中的结、圆盘和奇异现象
  • 批准号:
    2204349
  • 财政年份:
    2022
  • 资助金额:
    $ 56.03万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了