The ties that bind: Understanding actin-organelle interactions in planta.

结合的纽带:了解植物中肌动蛋白-细胞器的相互作用。

基本信息

  • 批准号:
    BB/X010651/1
  • 负责人:
  • 金额:
    $ 51.8万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Fellowship
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Plants are the basis of food security and energy / CO2 capture on planet earth. We face a major challenge with climate change and population growth meaning we need to grow 60% more food by 2050 in a period where both cold and warm temperature shocks are occurring with increased frequency. Therefore, novel insights into harnessing plant growth based on fundamental discoveries are required. At the cellular level plants display some of the fastest movements known in biology such as cytoplasmic streaming in algae. Organelles within plants including the nucleus, ER and Golgi bodies show rapid and coordinated movements within plant cells. This movement is critical for normal growth and development as well as responses to environmental conditions. Organelles are known to change shape and move according to certain stresses, including hot or cold temperature stress. However, we do not know the exact mechanism of how this movement occurs although we know it is driven by the actin cytoskeleton and myosin motor proteins. Actin is an intricate filamentous network in the cortex of plant cells. Which if disrupted, organelle movement stops. However, we do not yet understand how the actin cytoskeleton interacts with the organelles, driving movement within the cell. I will uncover how the ER and nucleus interact with the actin cytoskeleton. The ER is known to rapidly remodel during normal development and plant stress and the nucleus is highly mobile and its interaction with the actin cytoskeleton is known to regulate genome organisation and transcription. If we can understand how actin interacts with these organelles and the proteins involved, we can engineer these systems to improve plant growth and develop plants which are resistant to temperature stresses.To answer these challenges, we first need to be able to see the specific interactions between actin and these organelles. How exactly does the actin cytoskeleton interact with them? I have adapted and validated a fluorescent reporter which allows only actin interaction at the organelle membrane to be imaged, not the rest of the actin network. This will allow me to characterise precisely how the cytoskeleton interacts with these organelles and how this changes during normal and stress induced organelle movement. This will be transformational for our understanding of organelle dynamics in plants. Expanding on this novel approach, I will use a recently developed technique called proximity labelling that allows identification of proteins located at these contact sites between actin and an organelle. By identifying and characterising the proteins which control these interactions I will be able to determine exactly how actin drives mobility of these organelles. It is known that changing the rate of organelle dynamics has a direct effect on plant growth. Faster movement results in larger plants. As such, I will harness and engineer actin-ER interactions to fine-tune plant growth and generate climate smart plants which are resistant to temperature shocks, therefore sustainably enhancing agriculture.
植物是地球上粮食安全和能源/二氧化碳捕获的基础。我们面临着气候变化和人口增长的重大挑战,这意味着到 2050 年,在寒冷和温暖的气温冲击越来越频繁的时期,我们需要将粮食产量增加 60%。因此,需要基于基本发现来利用植物生长的新见解。在细胞水平上,植物表现出生物学中已知的一些最快的运动,例如藻类中的细胞质流动。植物内的细胞器,包括细胞核、内质网和高尔基体,在植物细胞内表现出快速和协调的运动。这种运动对于正常生长和发育以及对环境条件的反应至关重要。众所周知,细胞器会根据某些压力(包括高温或低温压力)改变形状和移动。然而,我们不知道这种运动如何发生的确切机制,尽管我们知道它是由肌动蛋白细胞骨架和肌球蛋白运动蛋白驱动的。肌动蛋白是植物细胞皮层中复杂的丝状网络。如果受到干扰,细胞器运动就会停止。然而,我们还不了解肌动蛋白细胞骨架如何与细胞器相互作用,驱动细胞内的运动。我将揭示内质网和细胞核如何与肌动蛋白细胞骨架相互作用。众所周知,内质网在正常发育和植物胁迫期间会快速重塑,细胞核具有高度移动性,其与肌动蛋白细胞骨架的相互作用可调节基因组组织和转录。如果我们能够了解肌动蛋白如何与这些细胞器和相关蛋白质相互作用,我们就可以设计这些系统来改善植物生长并培育出抵抗温度胁迫的植物。为了应对这些挑战,我们首先需要能够看到具体的相互作用肌动蛋白和这些细胞器之间。肌动蛋白细胞骨架到底如何与它们相互作用?我已经采用并验证了一种荧光报告基因,它只允许对细胞器膜上的肌动蛋白相互作用进行成像,而不是肌动蛋白网络的其余部分。这将使我能够准确地描述细胞骨架如何与这些细胞器相互作用,以及这种相互作用在正常和应激诱导的细胞器运动期间如何变化。这将改变我们对植物细胞器动力学的理解。扩展这种新方法,我将使用最近开发的一种称为邻近标记的技术,该技术可以识别位于肌动蛋白和细胞器之间这些接触位点的蛋白质。通过识别和表征控制这些相互作用的蛋白质,我将能够准确确定肌动蛋白如何驱动这些细胞器的移动性。众所周知,改变细胞器动力学速率对植物生长有直接影响。更快的运动会产生更大的植物。因此,我将利用和设计肌动蛋白-ER相互作用来微调植物生长并产生能够抵抗温度冲击的气候智能植物,从而可持续地增强农业。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Joseph McKenna其他文献

Coregulatory protein-orphan nuclear receptor interactions in the human adrenal cortex.
人类肾上腺皮质中的共调节蛋白-孤儿核受体相互作用。
  • DOI:
    10.1677/joe.1.06005
  • 发表时间:
    2005-07-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    S. Kelly;Joseph McKenna;Leonie S Young
  • 通讯作者:
    Leonie S Young
Sensorineural Hearing Loss in Postmeningitic Children
脑膜炎后儿童的感音神经性听力损失
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    M. Wellman;D. Sommer;Joseph McKenna
  • 通讯作者:
    Joseph McKenna
TFEB controls syncytiotrophoblast differentiation
TFEB 控制合体滋养层分化
  • DOI:
    10.1101/2024.02.20.581304
  • 发表时间:
    2024-02-21
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Esbin;Liza Dahal;Vinson B. Fan;Joseph McKenna;Eric Yin;X. Darzacq;Robert Tjian
  • 通讯作者:
    Robert Tjian
Glomangioma of the nasal cavity.
鼻腔血管瘤。
Assessing flap perfusion: optical spectroscopy versus venous doppler ultrasonography.
评估皮瓣灌注:光谱与静脉多普勒超声检查。
  • DOI:
  • 发表时间:
    2009-10-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Joseph McKenna;A. Pabbies;Jeri Friesen;M. Sowa;Thomas Hayakawa;P. Kerr
  • 通讯作者:
    P. Kerr

Joseph McKenna的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

基于“诱导-绑定”策略开发靶向降解IKZF1/3的CRBN调节剂及其生物活性研究
  • 批准号:
    82304317
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自噬绑定化合物(ATTEC)结合自噬关键蛋白LC3的机制和构效关系研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
藻源有机物抑制微囊藻混凝去除过程中基团绑定机理及调控策略研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于几何绑定策略构筑多功能双硼双齿路易斯酸
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于三维结构表征学习的RNA结合蛋白绑定位点预测算法研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

To separate and bind: Chelators for extraction and stable coordination of radioactive metal ions
分离和结合:用于放射性金属离子的萃取和稳定配位的螯合剂
  • 批准号:
    2885098
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Studentship
Polyunsaturated Fatty Acids and the Proteins That Bind Them: Driving Glioblastoma Growth and Infiltration in Brain
多不饱和脂肪酸和结合它们的蛋白质:驱动胶质母细胞瘤在大脑中的生长和浸润
  • 批准号:
    479724
  • 财政年份:
    2023
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Operating Grants
Functionalized lipid inactosomes to bind and clear SARS-CoV-2
功能化脂质内切体结合并清除 SARS-CoV-2
  • 批准号:
    10370745
  • 财政年份:
    2022
  • 资助金额:
    $ 51.8万
  • 项目类别:
Challenges to create natural product-drug conjugate starting from screening of natural products that bind to membrane proteins
从筛选与膜蛋白结合的天然产物开始创建天然产物-药物缀合物的挑战
  • 批准号:
    22K19115
  • 财政年份:
    2022
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
Identifying Small Molecules that Bind to the Cbl-b E3-Ligase
识别与 Cbl-b E3-连接酶结合的小分子
  • 批准号:
    2750375
  • 财政年份:
    2022
  • 资助金额:
    $ 51.8万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了