Temporal fascia function during human growth: biomechanical modelling to predict the impact of surgical intervention

人类生长过程中的颞筋膜功能:预测手术干预影响的生物力学模型

基本信息

  • 批准号:
    BB/X006867/1
  • 负责人:
  • 金额:
    $ 48.34万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

During growth, hard and soft tissues of the skull interact to influence skull shape as bone remodels in response to mechanical loading. However, the soft tissues that generate loads are not limited to the jaw closing musculature (temporalis, masseter, and pterygoids), but also consist of complex ligaments, tendons and fascial layers. One particularly overlooked and/or understudied structure is the temporal fascia. The temporal fascia covers the entire temporalis muscle on the side of our head, aiding in jaw movement and chewing, and potentially has a suite of functions to redistribute craniofacial strain, from directing temporalis muscle force, to limiting bending of the zygomatic arch (cheek bone) and orbit induced by the force of the masseter muscle.To date, the structure and function of the temporal fascia have only been investigated in a handful of studies, limiting our understanding of its functional significance. However, there is growing evidence from experimental studies, histology and mechanical testing, suggesting a more functionally significant role of the temporal fascia during growth and normal jaw function. Experimental work conducted in the 1960's showed distinct bone shape changes of the zygomatic arch in Cebus monkeys following permanent detachment of the temporal fascia. However, the impact of removal of the temporal fascia from the zygomatic arch during craniofacial surgery in children, a common procedure for patients with craniosynostosis, has not been investigated.Computational biomechanical models provide a promising non-invasive method of investigating bone responses to external loads. Industries such as the automotive and aerospace engineering, have implemented computational modelling into the design pipeline, saving money with simulations instead of production. The medical and health industry have started using biomechanical models to test patient-specific implants, the outcomes of surgery, and to learn more about the loads we experience during running. It is now possible to investigate whether the removal of the temporal fascia in a patient would have a significant impact on stress distribution within the skull, and function of the jaw muscles. This is especially relevant for children who are in a key stage of craniofacial growth when jaw muscles are loaded for the first time.As such, the primary purpose of this project is to explore the function of the temporal fascia, characterising its role during craniofacial growth and chewing, by building, analysing and validating biomechanical models of the human skull and jaw muscles. To date, the temporal fascia has never been incorporated into human computational biomechanical models (e.g., finite element analysis). This may be problematic when investigating jaw joint function and disorders (e.g., tooth grinding or bruxism), as well as temporal fascia function as mentioned above. Omitting the temporal fascia could potentially be impacting the accuracy of biomechanical models and the potential of these models for clinical uses in craniofacial, maxillary and dental surgeries, including where the impact of disruptive surgery to the temporal region is not fully understood. By building these models and exploring the function of the temporal fascia, we hope to provide insight into the impact of removing the temporal fascia during surgery, as well as its general role in normal jaw function and bone growth.
在生长过程中,颅骨的硬组织和软组织相互作用,随着骨骼响应机械载荷而重塑,从而影响颅骨形状。然而,产生负荷的软组织不仅限于颌部闭合肌肉组织(颞肌、咬肌和翼状肌),还包括复杂的韧带、肌腱和筋膜层。一种特别被忽视和/或未被充分研究的结构是颞筋膜。颞筋膜覆盖了我们头部一侧的整个颞肌,有助于下颌运动和咀嚼,并且可能具有一系列重新分配颅面张力的功能,从引导颞肌力量到限制颧弓(颧骨)的弯曲)和咬肌力引起的轨道。迄今为止,只有少数研究对颞筋膜的结构和功能进行了研究,限制了我们对其功能意义的理解。然而,越来越多的实验研究、组织学和机械测试证据表明,颞筋膜在生长和正常下颌功能过程中发挥着更重要的功能作用。 1960 年代进行的实验工作表明,在颞筋膜永久脱离后,宿布斯猴的颧弓骨形状发生了明显的变化。然而,儿童颅面手术(颅缝早闭患者的常见手术)中去除颧弓颞筋膜的影响尚未得到研究。计算生物力学模型提供了一种有前景的非侵入性方法来研究骨对外部载荷的反应。汽车和航空航天工程等行业已将计算建模纳入设计流程中,通过模拟而不是生产来节省资金。医疗和健康行业已经开始使用生物力学模型来测试患者特定的植入物、手术结果,并更多地了解我们在跑步过程中所经历的负荷。现在可以研究去除患者颞筋膜是否会对颅骨内的应力分布和颌部肌肉的功能产生重大影响。这对于正处于颅面生长关键阶段、下颌肌肉首次承受负荷的儿童尤其重要。因此,该项目的主要目的是探索颞筋膜的功能,表征其在颅面生长过程中的作用。通过建立、分析和验证人类头骨和下颌肌肉的生物力学模型来进行咀嚼和咀嚼。迄今为止,颞筋膜从未被纳入人类计算生物力学模型(例如有限元分析)。在研究颌关节功能和疾病(例如磨牙或磨牙症)以及上述颞筋膜功能时,这可能会出现问题。忽略颞筋膜可能会影响生物力学模型的准确性以及这些模型在颅面、上颌骨和牙科手术中临床应用的潜力,包括破坏性手术对颞区的影响尚未完全了解的情况。通过构建这些模型并探索颞筋膜的功能,我们希望深入了解手术期间去除颞筋膜的影响,以及其在正常颌功能和骨骼生长中的一般作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alana Sharp其他文献

Drivers of HIV treatment interruption: Early findings from community-led monitoring program in Haiti
艾滋病毒治疗中断的驱动因素:海地社区主导的监测项目的早期发现
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Soeurette Policar;Alana Sharp;Joanne Isidor Hyppolite;Gérald Marie Alfred;Eva Steide;Leïnadine Lucien;Naiké Ledan;Matthew M. Kavanagh
  • 通讯作者:
    Matthew M. Kavanagh

Alana Sharp的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

CGRP神经肽通过N-cadherin趋化筋膜成纤维细胞“桥接式牵引”MFUS促进皮肤再生的机制研究
  • 批准号:
    82372550
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
CXCL1/CXCR2信号轴上调Bcl-2促进筋膜定植巨噬细胞迁移在皮下脂肪组织原位再生中的机制研究
  • 批准号:
    82360615
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
超微创肌筋膜水射流切割分离机理及其关键技术
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
PDGF/JAK2/RhoGEF调控肌筋膜疼痛扳机点持续收缩机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
3D打印多孔钽搭载Cu/Mg磷酸钙制备骨移植器联合带血运筋膜治疗大段骨缺损的机制研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目

相似海外基金

Forcing the sinoatrial node pacemaker function
强制窦房结起搏器功能
  • 批准号:
    10659980
  • 财政年份:
    2023
  • 资助金额:
    $ 48.34万
  • 项目类别:
Inhibition of Regeneration Restraining Pathways to Promote Healing
抑制再生抑制途径以促进愈合
  • 批准号:
    10928440
  • 财政年份:
    2023
  • 资助金额:
    $ 48.34万
  • 项目类别:
Targeting host lipid metabolism to limit tissue damage in necrotizing fasciitis
靶向宿主脂质代谢以限制坏死性筋膜炎的组织损伤
  • 批准号:
    10639904
  • 财政年份:
    2023
  • 资助金额:
    $ 48.34万
  • 项目类别:
The role of protein O-GlcNAcylation in regulating keratinocyte function in skin fibrosis
蛋白O-GlcNAc酰化在调节皮肤纤维化角质形成细胞功能中的作用
  • 批准号:
    10725270
  • 财政年份:
    2023
  • 资助金额:
    $ 48.34万
  • 项目类别:
Two-Color Near-Infrared Fluorescence Guided Surgery Tools Enabling Simultaneous Cancer Margin and Nerve Visualization during Head and Neck Squamous Cell Carcinoma Resection
双色近红外荧光引导手术工具可在头颈鳞状细胞癌切除过程中同时实现癌症边缘和神经可视化
  • 批准号:
    10603689
  • 财政年份:
    2023
  • 资助金额:
    $ 48.34万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了