Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
基本信息
- 批准号:BB/Y513763/1
- 负责人:
- 金额:$ 31.02万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The world's rapid population growth and climate change pose challenges to sustainable food production. Agricultural crop production has long relied on Process-based models (PBMs) to forecast yields and understand how plant physiological processes interact with the environment, influencing crop growth and development. However, the PBMs suffer limitations in making accurate predictions due to complex weather/plant interactions. This is especially true for extreme events (drought, heat waves), pests, diseases, and stresses not accounted for. Process-based models' predictive abilities are hindered by uncertainties in structure, inputs, and parameters, exceeding observed yield variations over time/space.Machine Learning (ML) offers quick crop yield prediction by learning from data, but it's often a black box needing explanations. Integrating PBMs and ML has shown promise in improving predictions. Challenges remain in effective integration: choosing the right ML for accurate simulation, balancing interpretability and uncertainty. Environmental impact assessment is often overlooked.Building on our existing foundations, this partnership brings together leading researchers in agri-environment sciences, crop modelling from Germany and computer science (big data/machine learning/AI) from UK, and aims to develop an innovative AI framework by synergising process-based and machine learning models for accurate and explainable crop yield prediction coupling with environmental impact assessment. The overarching aim is to build and foster a long-term partnership between UK and Germany's top research groups to address the call theme- AI in sustainable agriculture and food and provides the added value to our ongoing research in climate-smart agriculture solutions. To achieve this, we will conduct a series of research activities including feasibility study, staff exchanges/early career researchers (ECRs) visits, facility and data access, workshops, and joint publications/funding applications. The integration of AI with agricultural modeling represents an emerging paradigm that pushes the boundaries of agricultural research. It not only offers improved crop yield predictions and climate change impact mitigation but also opens up new avenues for understanding crop dynamics, resource optimization, and sustainable farming practices. The proposed approach has the potential to be applied at different scales, ranging from individual farm fields to regional and global levels. This scalability and generalization make the AI-driven synergy suitable for addressing complex agricultural challenges and adapting to diverse environmental conditions. It has the capacity to revolutionize agriculture, leading to more efficient, sustainable, and resilient food production systems.This research offers potential benefits to farmers, consumers, policymakers, and the environment. Improved predictions will enhance agricultural decision-making, increase food security, promote climate change adaptation and mitigation, and optimize resource utilization. Additionally, the research will advance scientific knowledge and benefit industry and academic institutions.
世界快速的人口增长和气候变化对可持续粮食生产构成了挑战。农作物的生产长期以来一直依赖于基于过程的模型(PBM)来预测产量,并了解植物生理过程如何与环境相互作用,从而影响农作物的生长和发展。但是,由于天气复杂/植物相互作用,PBM在做出准确的预测时遭受了限制。对于极端事件(干旱,热浪),害虫,疾病和不考虑的压力尤其如此。基于过程的模型的预测能力受到结构,输入和参数的不确定性的阻碍,超过了随时间/空间的观察到的收益率变化。机器学习(ML)通过从数据中学习来提供快速的作物产量预测,但通常是一个黑匣子,需要说明。集成PBM和ML在改善预测方面已显示出希望。挑战仍然存在于有效的整合中:选择正确的ML以进行准确的模拟,平衡解释性和不确定性。环境影响评估经常被忽视。建立我们现有的基础,这种伙伴关系融合了农业环境科学领域的领先研究人员,来自英国的作物模型(大数据/机器学习/AI),旨在通过对基于基于过程和机器的机器学习模型进行创新的AI框架,以对环境的共同构图进行创新的AI框架。总体目的是建立和促进英国和德国顶级研究小组之间的长期合作伙伴关系,以解决可持续农业和食品中的呼叫主题AI,并为我们在气候智能农业解决方案中正在进行的研究带来额外的价值。为了实现这一目标,我们将进行一系列研究活动,包括可行性研究,员工交流/早期职业研究人员(ECRS)访问,设施和数据访问,研讨会以及联合出版物/资金申请。 AI与农业建模的整合代表了一种新兴的范式,它突破了农业研究的界限。它不仅提供了改进的作物收益预测和气候变化影响缓解的措施,而且还为了解农作物动态,资源优化和可持续的农业实践开辟了新的途径。所提出的方法有可能在不同的尺度上应用,从单个农场到区域和全球水平。这种可扩展性和概括使AI驱动的协同作用适合应对复杂的农业挑战并适应各种环境条件。它有能力彻底改变农业,从而导致更有效,可持续和韧性的粮食生产系统。这项研究为农民,消费者,决策者和环境提供了潜在的好处。改进的预测将增强农业决策,提高粮食安全,促进气候变化的适应和缓解,并优化资源利用。此外,该研究将推进科学知识和利益行业和学术机构。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Liangxiu Han其他文献
Dual Attention Multi-Instance Deep Learning for Alzheimer’s Disease Diagnosis With Structural MRI
使用结构 MRI 进行阿尔茨海默病诊断的双重关注多实例深度学习
- DOI:10.1109/tmi.2021.307707910.1109/tmi.2021.3077079
- 发表时间:2021-052021-05
- 期刊:
- 影响因子:10.6
- 作者:Wenyong Zhu;Liang Sun;Jiashuang Huang;Liangxiu Han;Daoqiang ZhangWenyong Zhu;Liang Sun;Jiashuang Huang;Liangxiu Han;Daoqiang Zhang
- 通讯作者:Daoqiang ZhangDaoqiang Zhang
Analyzing Gene Expression Imaging Data in Developmental Biology
分析发育生物学中的基因表达成像数据
- DOI:10.1002/9781118540343.ch1610.1002/9781118540343.ch16
- 发表时间:20132013
- 期刊:
- 影响因子:2.1
- 作者:Liangxiu Han;Jano van Hemert;I. Overton;Paolo Besana;R. BaldockLiangxiu Han;Jano van Hemert;I. Overton;Paolo Besana;R. Baldock
- 通讯作者:R. BaldockR. Baldock
Supervised Hyperalignment for Multisubject fMRI Data Alignment
用于多主体 fMRI 数据对齐的监督超对齐
- DOI:10.1109/tcds.2020.296598110.1109/tcds.2020.2965981
- 发表时间:2020-012020-01
- 期刊:
- 影响因子:5
- 作者:Muhammad Yousefnezhad;Aless;ro Selvitella;Liangxiu Han;Daoqiang ZhangMuhammad Yousefnezhad;Aless;ro Selvitella;Liangxiu Han;Daoqiang Zhang
- 通讯作者:Daoqiang ZhangDaoqiang Zhang
The self-adaptation to dynamic failures for efficient virtual organization formations in grid computing context
网格计算环境下高效虚拟组织形成的动态故障自适应
- DOI:
- 发表时间:20092009
- 期刊:
- 影响因子:0
- 作者:Liangxiu HanLiangxiu Han
- 通讯作者:Liangxiu HanLiangxiu Han
A new approach to journal co-citation matrix construction based on the number of co-cited articles in journals
基于期刊共被引文章数构建期刊共被引矩阵的新方法
- DOI:10.1007/s11192-019-03141-910.1007/s11192-019-03141-9
- 发表时间:20192019
- 期刊:
- 影响因子:3.9
- 作者:Lijun Yang;Liangxiu Han;N. LiuLijun Yang;Liangxiu Han;N. Liu
- 通讯作者:N. LiuN. Liu
共 15 条
- 1
- 2
- 3
Liangxiu Han的其他基金
EYE-SCREEN-4-DPN: Development of an innovative Intelligent EYE imaging solution for SCREENing of Diabetic Peripheral Neuropathy
EYE-SCREEN-4-DPN:开发创新的智能眼部成像解决方案,用于筛查糖尿病周围神经病变
- 批准号:EP/X013707/1EP/X013707/1
- 财政年份:2023
- 资助金额:$ 31.02万$ 31.02万
- 项目类别:Research GrantResearch Grant
UK-China Agritech Challenge: CropDoc - Precision Crop Disease Management for Farm Productivity and Food Security
中英农业科技挑战赛:CropDoc - 精准作物病害管理,提高农业生产力和粮食安全
- 批准号:BB/S020969/1BB/S020969/1
- 财政年份:2019
- 资助金额:$ 31.02万$ 31.02万
- 项目类别:Research GrantResearch Grant
EPIC: An automated diagnostic tool for Potato Late Blight disease detection from images
EPIC:一种从图像检测马铃薯晚疫病的自动化诊断工具
- 批准号:BB/R019983/1BB/R019983/1
- 财政年份:2018
- 资助金额:$ 31.02万$ 31.02万
- 项目类别:Research GrantResearch Grant
AGILE: A Cloud Approach to Automatic Gene Expression Pattern Recognition and Annotation Over Large-Scale Images
AGILE:大规模图像上自动基因表达模式识别和注释的云方法
- 批准号:BB/K004077/1BB/K004077/1
- 财政年份:2012
- 资助金额:$ 31.02万$ 31.02万
- 项目类别:Research GrantResearch Grant
相似国自然基金
基于病毒性肺炎发病过程探讨中药复方多靶点协同防治的物质基础与作用机制
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:专项基金项目
基于病毒性肺炎发病过程探讨中药复方多靶点协同防治的物质基础与作用机制
- 批准号:82141207
- 批准年份:2021
- 资助金额:60.00 万元
- 项目类别:专项项目
基于互作转录组学及代谢组学研究重金属吸附过程中真菌-微藻共生系统的协同作用机制
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:
基于Fe2O3/CaO-Ca12Al14O33多功能材料组分协同作用强化循环过程焦油脱除和CO2捕集的制氢机理
- 批准号:
- 批准年份:2019
- 资助金额:58 万元
- 项目类别:面上项目
基于组蛋白H3K9me3和DNA甲基化修饰协同作用研究早期胚胎发育过程中基因印记区域的调控
- 批准号:31801059
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SBIR Phase I: CAS: A light-based, energy-generating, carbon removal process
SBIR 第一阶段:CAS:基于光的能量产生碳去除过程
- 批准号:23355962335596
- 财政年份:2024
- 资助金额:$ 31.02万$ 31.02万
- 项目类别:Standard GrantStandard Grant
FlexNIR-PD: A resource efficient UK-based production process for patented flexible Near Infrared Sensors for LIDAR, Facial recognition and high-speed data retrieval
FlexNIR-PD:基于英国的资源高效生产工艺,用于 LIDAR、面部识别和高速数据检索的专利柔性近红外传感器
- 批准号:1009811310098113
- 财政年份:2024
- 资助金额:$ 31.02万$ 31.02万
- 项目类别:Collaborative R&DCollaborative R&D
Computational and neural signatures of interoceptive learning in anorexia nervosa
神经性厌食症内感受学习的计算和神经特征
- 批准号:1082404410824044
- 财政年份:2024
- 资助金额:$ 31.02万$ 31.02万
- 项目类别:
NSF Convergence Accelerator Track M: A new biomanufacturing process for making precipitated calcium carbonate and plant-based compounds that support human health
NSF Convergence Accelerator Track M:一种新的生物制造工艺,用于制造支持人类健康的沉淀碳酸钙和植物基化合物
- 批准号:23442282344228
- 财政年份:2024
- 资助金额:$ 31.02万$ 31.02万
- 项目类别:Standard GrantStandard Grant
An innovative UK-based thermoplastic carbon/titanium bicycle frame production process that can reduce lead time by 90% and carbon emissions by 70%
An%20创新%20英国%20热塑性%20碳/钛%20自行车%20框架%20生产%20工艺%20that%20can%20减少%20铅%20时间%20by%2090%%20和%20碳%20排放%20by%2070%
- 批准号:1009238710092387
- 财政年份:2024
- 资助金额:$ 31.02万$ 31.02万
- 项目类别:Collaborative R&DCollaborative R&D