EPIC: An automated diagnostic tool for Potato Late Blight disease detection from images
EPIC:一种从图像检测马铃薯晚疫病的自动化诊断工具
基本信息
- 批准号:BB/R019983/1
- 负责人:
- 金额:$ 8.23万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The yields of crop plants are deleteriously affected by various diseases. It is estimated that almost 25% of worldwide crops are lost to diseases, which may cause devastating economical, social and ecological losses. In China, as the fourth important food crop, yield losses from potato late blight diseases can vary from 20%-40% in common years. In severe cases, the yield loss may reach 50%-100%. The estimated yearly economic losses due to this disease are around $5 billion in China. Early accurate detection and identification of crop diseases plays an important role in effectively controlling and preventing diseases for sustainable agriculture and food security.In our previous funded projects, we have developed an innovative automated machine vision system for efficient crop disease diagnosis from images, which have proven the technical feasibility of using advanced image processing, machine learning, mobile and cloud computing approaches. This project will take it forward and develop a near-market product ready for commercialisation, which can provide more accurate real-time information for crop disease surveillance. The tool can run on mobile devices. Farmers with basic training can perform disease diagnosis immediately. Compared to the current practices using human visual observation (which is labour intensive, costly and error-prone), this machine vision system can dramatically speed up diagnosis, and give growers more accurate information on which to base their disease control strategies and stop crop yields from being reduced by infection. This technology can overcome lack of expertise, help make a significant impact on agricultural productivity and farmer incomes, ensuring food security, and deliver highly cost-effective, long-term economic and social impact in China.To achieve actual impact and demonstrable benefits in China, this project will work closely with Chinese partners from academia, industry and farmers including: the project partner (Hebei Agriculture University (HEBAU)), and end users (Beijing Mengbangda Biotechnology Co. Ltd (BMB) and Guyuan County Potato Association (GCPA)). They will provide support in gathering the field data, setting up trial systems and domain knowledge input from plant pathologists for local agriculture and fine tuning the systems in the fields, as well as potential commercialization of this technology in China (Hebei province initially). The project focuses on three stages of translational/user engagement: 1) System requirement gathering from users; 2) System evaluation with input from users; 3) Potential impact and commercial exploitation with end users. The tool will be initially deployed in the real fields provided by end users (BMB and GCPA) in Hebei province at the end of project. This will help protect potato-planting area of over 380k MU initially from the disease infection with reduced annual costs on fungicide usage and damages to environment. Other translational activities include organization of workshops, conference attendance and paper publications, which will be used for dissemination and engagement with a wide range of user groups on a large-scale.This project will not only develop a near-market product but will also generate a significantly measurable impact, promote long-term sustainable growth, economic development and welfare in China and beyond.
农作物的产量受到各种疾病的有害影响。据估计,全球近 25% 的农作物因病害而损失,这可能造成毁灭性的经济、社会和生态损失。在我国,马铃薯作为第四大粮食作物,晚疫病造成的产量损失,常年可达20%-40%。严重时,产量损失可达50%-100%。据估计,中国每年因这种疾病造成的经济损失约为 50 亿美元。作物病害的早期准确检测和识别对于有效控制和预防病害以实现可持续农业和粮食安全发挥着重要作用。在我们之前的资助项目中,我们开发了一种创新的自动化机器视觉系统,用于从图像中高效诊断作物病害,该系统具有证明了使用先进图像处理、机器学习、移动和云计算方法的技术可行性。该项目将进一步推进并开发一款可商业化的近市场产品,为作物病害监测提供更准确的实时信息。该工具可以在移动设备上运行。接受过基础培训的农民可以立即进行疾病诊断。与目前使用人类视觉观察的做法(劳动密集型、成本高昂且容易出错)相比,该机器视觉系统可以显着加快诊断速度,并为种植者提供更准确的信息,以此为基础制定疾病控制策略并阻止作物产量因感染而减少。该技术可以克服专业知识的缺乏,有助于对农业生产力和农民收入产生重大影响,确保粮食安全,并在中国产生极具成本效益的长期经济和社会影响。在中国实现实际影响和明显效益该项目将与来自学术界、工业界和农民的中国合作伙伴密切合作,包括:项目合作伙伴(河北农业大学(HEBAU))和最终用户(北京盟邦达生物技术有限公司(BMB)和固原县马铃薯协会) (GCPA))。他们将为收集田间数据、建立试验系统、植物病理学家为当地农业输入领域知识、微调田间系统以及该技术在中国(首先是河北省)的潜在商业化提供支持。该项目侧重于翻译/用户参与的三个阶段:1)从用户那里收集系统需求; 2)根据用户的意见进行系统评估; 3) 对最终用户的潜在影响和商业利用。项目结束后,该工具将初步部署在河北省最终用户(BMB 和 GCPA)提供的实际现场。这将有助于保护超过38万亩的马铃薯种植面积初步免受疾病感染,并减少每年的杀菌剂使用成本和对环境的破坏。其他转化活动包括组织研讨会、参加会议和纸质出版物,这些活动将用于大规模传播和与广泛的用户群体互动。该项目不仅将开发接近市场的产品,还将产生产生重大、可衡量的影响,促进中国及其他地区的长期可持续增长、经济发展和福利。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Biologically Interpretable Two-Stage Deep Neural Network (BIT-DNN) for Vegetation Recognition From Hyperspectral Imagery
- DOI:10.1109/tgrs.2021.3058782
- 发表时间:2021-02
- 期刊:
- 影响因子:8.2
- 作者:Yue Shi;Liangxiu Han;Wenjiang Huang;Sheng Chang;Yingying Dong;D. Dancey;Lianghao Han
- 通讯作者:Yue Shi;Liangxiu Han;Wenjiang Huang;Sheng Chang;Yingying Dong;D. Dancey;Lianghao Han
Novel CropdocNet Model for Automated Potato Late Blight Disease Detection from Unmanned Aerial Vehicle-Based Hyperspectral Imagery
- DOI:10.3390/rs14020396
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Yue Shi;Liangxiu Han;Anthony Kleerekoper;Sheng Chang;Tongle Hu
- 通讯作者:Yue Shi;Liangxiu Han;Anthony Kleerekoper;Sheng Chang;Tongle Hu
How Well Do Deep Learning-Based Methods for Land Cover Classification and Object Detection Perform on High Resolution Remote Sensing Imagery?
- DOI:10.3390/rs12030417
- 发表时间:2020-02-01
- 期刊:
- 影响因子:5
- 作者:Zhang, Xin;Han, Liangxiu;Zhu, Liang
- 通讯作者:Zhu, Liang
A Latent Encoder Coupled Generative Adversarial Network (LE-GAN) for Efficient Hyperspectral Image Super-Resolution
- DOI:10.1109/tgrs.2022.3193441
- 发表时间:2022-01-01
- 期刊:
- 影响因子:8.2
- 作者:Shi, Yue;Han, Liangxiu;Dancey, Darren
- 通讯作者:Dancey, Darren
A fast Fourier convolutional deep neural network for accurate and explainable discrimination of wheat yellow rust and nitrogen deficiency from Sentinel-2 time series data.
- DOI:10.3389/fpls.2023.1250844
- 发表时间:2023
- 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Liangxiu Han其他文献
Dual Attention Multi-Instance Deep Learning for Alzheimer’s Disease Diagnosis With Structural MRI
使用结构 MRI 进行阿尔茨海默病诊断的双重关注多实例深度学习
- DOI:
10.1109/tmi.2021.3077079 - 发表时间:
2021-05 - 期刊:
- 影响因子:10.6
- 作者:
Wenyong Zhu;Liang Sun;Jiashuang Huang;Liangxiu Han;Daoqiang Zhang - 通讯作者:
Daoqiang Zhang
Analyzing Gene Expression Imaging Data in Developmental Biology
分析发育生物学中的基因表达成像数据
- DOI:
10.1002/9781118540343.ch16 - 发表时间:
2013 - 期刊:
- 影响因子:2.1
- 作者:
Liangxiu Han;Jano van Hemert;I. Overton;Paolo Besana;R. Baldock - 通讯作者:
R. Baldock
Supervised Hyperalignment for Multisubject fMRI Data Alignment
用于多主体 fMRI 数据对齐的监督超对齐
- DOI:
10.1109/tcds.2020.2965981 - 发表时间:
2020-01 - 期刊:
- 影响因子:5
- 作者:
Muhammad Yousefnezhad;Aless;ro Selvitella;Liangxiu Han;Daoqiang Zhang - 通讯作者:
Daoqiang Zhang
The self-adaptation to dynamic failures for efficient virtual organization formations in grid computing context
网格计算环境下高效虚拟组织形成的动态故障自适应
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Liangxiu Han - 通讯作者:
Liangxiu Han
A new approach to journal co-citation matrix construction based on the number of co-cited articles in journals
基于期刊共被引文章数构建期刊共被引矩阵的新方法
- DOI:
10.1007/s11192-019-03141-9 - 发表时间:
2019 - 期刊:
- 影响因子:3.9
- 作者:
Lijun Yang;Liangxiu Han;N. Liu - 通讯作者:
N. Liu
Liangxiu Han的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Liangxiu Han', 18)}}的其他基金
Synergising Process-Based and Machine Learning Models for Accurate and Explainable Crop Yield Prediction along with Environmental Impact Assessment
协同基于流程和机器学习模型,实现准确且可解释的作物产量预测以及环境影响评估
- 批准号:
BB/Y513763/1 - 财政年份:2024
- 资助金额:
$ 8.23万 - 项目类别:
Research Grant
EYE-SCREEN-4-DPN: Development of an innovative Intelligent EYE imaging solution for SCREENing of Diabetic Peripheral Neuropathy
EYE-SCREEN-4-DPN:开发创新的智能眼部成像解决方案,用于筛查糖尿病周围神经病变
- 批准号:
EP/X013707/1 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Research Grant
UK-China Agritech Challenge: CropDoc - Precision Crop Disease Management for Farm Productivity and Food Security
中英农业科技挑战赛:CropDoc - 精准作物病害管理,提高农业生产力和粮食安全
- 批准号:
BB/S020969/1 - 财政年份:2019
- 资助金额:
$ 8.23万 - 项目类别:
Research Grant
AGILE: A Cloud Approach to Automatic Gene Expression Pattern Recognition and Annotation Over Large-Scale Images
AGILE:大规模图像上自动基因表达模式识别和注释的云方法
- 批准号:
BB/K004077/1 - 财政年份:2012
- 资助金额:
$ 8.23万 - 项目类别:
Research Grant
相似国自然基金
支持病理诊断自动化的数学理论、方法与系统
- 批准号:12126605
- 批准年份:2021
- 资助金额:100 万元
- 项目类别:数学天元基金项目
支持病理诊断自动化的数学理论、方法与系统
- 批准号:12126609
- 批准年份:2021
- 资助金额:100 万元
- 项目类别:数学天元基金项目
中文写作能力及其发展的自动化诊断研究
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
胎儿超声智能扫查方法研究:标准切面定位及生物学参数测量的自动化
- 批准号:81270707
- 批准年份:2012
- 资助金额:70.0 万元
- 项目类别:面上项目
水稻营养元素的光谱分析与自动化研究
- 批准号:49401012
- 批准年份:1994
- 资助金额:7.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Development and validation of a "Pediatric Delirium Diagnostic Scale" using an automated infrared pupillometry
使用自动红外瞳孔测量法开发和验证“儿科谵妄诊断量表”
- 批准号:
23K15634 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Characterization of the Neurobiological Profiles of Young Adults with and without Developmental Language Disorder (DLD)
患有和不患有发育性语言障碍 (DLD) 的年轻人的神经生物学特征的表征
- 批准号:
10721464 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别:
Non-invasive Condition Monitoring of Ventricular Assistive Devices Using Automated Advanced Acoustic Methods
使用自动化先进声学方法对心室辅助装置进行无创状态监测
- 批准号:
10629554 - 财政年份:2023
- 资助金额:
$ 8.23万 - 项目类别: