ALMOND: Agriculture Living Machine of Operational Nano Droplets

ALMOND:可操作纳米液滴的农业生命机器

基本信息

  • 批准号:
    BB/Y008537/1
  • 负责人:
  • 金额:
    $ 208.5万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Industrialisation of the agricultural sector has been essential for feeding the growing global population, but has resulted in increased chemical burden on ecosystems with the use of chemical pesticides and insecticides to protect crop growth.The global seed treatment market size was valued at $13.4B in 2022 and is expected to grow ~10 % annually until 2030. US farmers annually spend >$575 million on fungicides to provide a commercial crop gain of c.$13 billion. This reflects the huge role of agrichemicals in current usage to maintain global food supplies.The ecological impacts of chemical pesticides and insecticides, including environmental persistence, ecosystem toxicity, water contamination, foodchain accumulation and emerging resistance, have become increasingly apparent and have seen a move away from their use. However, alternative solutions are not without challenge. There is increasing interest in harnessing naturally occurring microorganisms (biopesticides) in or on soil or within seed-coatings to help protect crops, and this approach has seen much success with species such as Bacillus thuringiensis and Lysinbacillus sphaericus, and insect-active fungi and viruses. However, a number of highly promising specific pesticide and insecticides biocactive molecules made by micro-organisms that can protect crops are difficult to harness in practice due to potential concerns about the micro-organisms being able to cause infection in people or animals, until proven safe. Similarly, the active compounds themselves are often unstable or difficult to purify, so these are challenging to use alone. We have identified novel bioactive polyyne, cepacin in Burkholderia bacteria and discovered its biosynthetic pathway. Cepacin has fungicidal activity that protects germinating crops against damping off disease, as such these specialised metabolites represent promising novel bioactives.In this project we will use cutting edge 3D-printed microfluidics to produce non-reproducing, environmentally benign artificial cells - artificial engineered materials inspired by biology based on the cell membrane. These artificial cells contain networked compartments, separated by lipid bilayers, much like biological cells, and can serve as biochemical microfactories to synthesis these promising pesticide and insecticide biochemicals locally, to enhance crop health. By formulating these artificial cells as crop seed coatings in biodegradable hydrogel shells, the protective effects are localised exactly where needed. The artificial cells will be programmed to respond to genetic cues when the seed germinates, to activate pesticide protection. In this way the artificial cells can respond in different ways in different circumstances of plant health, disease or in the presence of different insect predators.Importantly these systems afford flexibility and a combinatorial ability to assemble pathways and toxins not normally found together, without creating transgenic organisms that that could prove challenging to license. In this way, we can use different active biomolecules in combination in a single synergistic formulation and also combine with existing biopesticides for enhanced function, that includes nitrogen fixation for enhanced crop growth and soil health and carbon capture and conversion to energy to power the artificial cell metabolism .
Industrialisation of the agricultural sector has been essential for feeding the growing global population, but has resulted in increased chemical burden on ecosystems with the use of chemical pesticides and insecticides to protect crop growth.The global seed treatment market size was valued at $13.4B in 2022 and is expected to grow ~10 % annually until 2030. US farmers annually spend >$575 million on fungicides to provide a commercial crop gain of c.$13 billion.这反映了农业化学物质在当前使用中的巨大作用,以维持全球粮食供应。化学农药和杀虫剂的生态影响,包括环境持久性,生态系统毒性,水污染,食品链积累和新兴的耐药性,变得越来越明显,并且已经变得越来越明显。但是,替代解决方案并非没有挑战。人们对利用在土壤或种子涂料中的自然发生的微生物(生物农药)的兴趣越来越大,以帮助保护农作物,这种方法在苏皮鲁斯芽孢杆菌和诸如lysinbacillus sphaericus以及昆虫活性真菌和病毒等物种中取得了很大的成功。然而,由于对微生物的潜在关注,可以在实践中引起人或动物的感染,直到证明安全的安全性,因此在实践中很难利用许多可以保护农作物的微生物制造的高度有希望的特异性农药和杀虫剂生物活性分子。同样,活性化合物本身通常是不稳定或难以净化的,因此单独使用这些都具有挑战性。我们已经确定了伯克霍尔德细菌中新型的生物活性多烯,卷霉素,并发现了其生物合成途径。卷可以具有杀真菌活性,可保护发芽作物免受疾病的影响,因此这些专门的代谢产物代表了有希望的新型生物活性剂。在该项目中,我们将使用最先进的3D打印的微流体,以基于Cell Membrane的生物学为灵感而受到生物学的启发。这些人造细胞包含网络隔室,被脂质双层隔开,就像生物细胞一样,并且可以用作生化的微生物,以合成这些有希望的农药和杀虫剂的生化物,从而增强作物健康。通过将这些人造细胞制定为可生物降解水凝胶壳中的作物涂层,保护性效果是精确局部的。当种子发芽时,将对人造细胞进行编程以应对遗传线索,以激活农药保护。通过这种方式,人造细胞可以在植物健康,疾病的不同情况下或在不同昆虫捕食者的情况下以不同的方式做出反应。这些系统具有柔韧性,并具有组合途径和毒素的组合能力,而毒素正常发现,而无需创造有可能挑战许可的转基因生物体。这样,我们可以在单个协同制剂中使用不同的活性生物分子组合,并与现有的生物农药结合起来以增强功能,其中包括氮固定,以增强作物生长,土壤健康以及土壤健康,碳捕获和转化为能量,以便为人工细胞代谢提供动力。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Oliver Castell其他文献

GENERATION OF COMPLEX EMULSIONS USING MONOLITHIC, DUAL-MATERIAL 3D-PRINTED MICROFLUIDIC DEVICES
使用整体双材料 3D 打印微流体装置生成复杂乳液
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jin Li;Pantelitsa Dimitriou;Oliver Castell;D. Barrow
  • 通讯作者:
    D. Barrow

Oliver Castell的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

黄河三角洲盐碱农业根土水交互过程及其机理
  • 批准号:
    42320104006
  • 批准年份:
    2023
  • 资助金额:
    209 万元
  • 项目类别:
    国际(地区)合作与交流项目
考虑农户合作形式与风险偏好的农业补贴机制设计研究
  • 批准号:
    72301193
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
农户精准农业技术采纳:决策机制、效应评估与政策优化
  • 批准号:
    72303101
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
全球农业食品系统的生态毒理及人体健康影响研究
  • 批准号:
    52370193
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
手性酰胺类农药污染的农业土壤中抗生素抗性基因传播扩散的对映选择性机制
  • 批准号:
    42377238
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Family resources, food security, and child health during periods of temperature change and adverse climate conditions
温度变化和不利气候条件期间的家庭资源、粮食安全和儿童健康
  • 批准号:
    10667887
  • 财政年份:
    2023
  • 资助金额:
    $ 208.5万
  • 项目类别:
The Resilience of Food Security to Climate Shocks
粮食安全对气候冲击的抵御能力
  • 批准号:
    10586151
  • 财政年份:
    2022
  • 资助金额:
    $ 208.5万
  • 项目类别:
The Resilience of Food Security to Climate Shocks
粮食安全对气候冲击的抵御能力
  • 批准号:
    10452340
  • 财政年份:
    2022
  • 资助金额:
    $ 208.5万
  • 项目类别:
Emerging Infectious Diseases Research Center - East and Central Africa
新发传染病研究中心 - 东非和中非
  • 批准号:
    10464357
  • 财政年份:
    2021
  • 资助金额:
    $ 208.5万
  • 项目类别:
Research on the requirements for building a local commons of agriculture as a core of living space
以农业为核心的居住空间建设需求研究
  • 批准号:
    21K18761
  • 财政年份:
    2021
  • 资助金额:
    $ 208.5万
  • 项目类别:
    Grant-in-Aid for Challenging Research (Exploratory)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了