Quantitative metabolomics for prediction of lameness and elucidation of related mechanistic pathways in dairy cattle
用于预测奶牛跛行并阐明相关机制途径的定量代谢组学
基本信息
- 批准号:BB/W005654/1
- 负责人:
- 金额:$ 85.56万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Complex diseases of humans and livestock are common and extremely challenging to manage. Many factors contribute towards an individual's risk of experiencing disease, including genetic and non-genetic factors. When trying to manage disease risk, the relative importance of these different factors needs to be measured and understood, which is difficult to achieve. Ultimately, these challenges often result in a lack of knowledge and understanding of how to prevent or reduce disease risk in a population. Lameness (impaired mobility) is one of the highest priority diseases for the UK dairy industry. This painful and debilitating condition affects cattle welfare as well as production and health. Current estimates suggest that at any one time ~30% of dairy cows in UK herds are suffering from lameness. Implications extend beyond the cow to the sustainability of dairy farming and environmental impacts from disease reducing efficiencies. As a complex disease with many factors contributing to its occurrence, lameness is inherently challenging to tackle and major gaps exist in our understanding of disease processes contributing to lameness. What is known, is that cows entering their first lactation (heifers) are the most important group of cattle in a dairy herd in terms of preventing lameness; heifers represent the future of the herd and once cows experience a first episode of lameness pathological changes occur in the foot that place them at higher risk of recurrence. If we are to prevent lameness occurring in the first place, attention should be focussed on heifers. Detection of lameness is currently only possible at an advanced stage of disease when pain causes cows to walk with an altered gait. The ability to detect lameness early on, prior to this stage, would be a huge advancement on the current situation resulting in improved health, welfare and productivity.Metabolomics is a technique that allows the end products (metabolome) of genetic and non-genetic factors influencing disease risk to be measured. By comparing the metabolome of diseased and healthy individuals, signatures (biomarkers) of disease, can be identified. To make these comparisons, complex statistical methods can be used; a powerful combination of statistics and metabolomics can identify disease biomarkers and further our understanding of processes contributing to disease risk. Our previous work has shown that by using this approach lameness can be predicted with an accuracy of 93% from the metabolome of urine samples collected prior to calving (1 - 10 weeks prior to lameness). This project, will use an innovative combination of metabolomics and artificial intelligence to identify biomarkers for lameness in dairy cows. Groups of 160 dairy heifers will be monitored over a prolonged period of time (up to 305 days or one lactation per animal) with collection of regular urine, plasma and milk samples and data related to lameness, health and production; providing a valuable resource for this and future projects. Paired samples will be selected from lame and non-lame first lactation cows shortly before the first case of lameness and prior to calving. These time-points have been selected as being important in the development of lesions causing lameness. Computational models will be developed to predict the occurrence of lameness by comparing the metabolome of diseased and healthy individuals; identifying signals in the metabolome that predict lameness and using these to understand the disease processes occurring. Results will provide a vital insight into disease pathways contributing to lameness in dairy cows and the ability to predict disease risk. This in turn will inform disease management and provide a tool for early prediction of lameness, offering a step change in the detection and management of lameness in dairy cows. This approach is applicable to many other complex diseases in both livestock and humans and will be further utilised in future work.
人类和牲畜的复杂疾病很常见,而且管理起来极具挑战性。许多因素都会导致个体患病的风险,包括遗传和非遗传因素。在尝试管理疾病风险时,需要衡量和了解这些不同因素的相对重要性,但这是很难实现的。最终,这些挑战往往导致人们缺乏对如何预防或降低人群疾病风险的知识和理解。跛行(行动不便)是英国乳制品行业最重要的疾病之一。这种痛苦和虚弱的状况影响牛的福利以及生产和健康。目前的估计表明,在任何时候,英国牛群中约 30% 的奶牛都患有跛行。其影响不仅限于奶牛,还包括奶牛养殖的可持续性以及疾病减少效率对环境的影响。作为一种复杂的疾病,其发生有多种因素,跛行本身就具有挑战性,而且我们对导致跛行的疾病过程的理解存在重大差距。众所周知,进入第一次泌乳期的奶牛(小母牛)是奶牛群中预防跛行最重要的牛群;小母牛代表着牛群的未来,一旦奶牛经历第一次跛行,足部就会发生病理变化,使它们面临更高的复发风险。如果我们要从一开始就防止跛行的发生,就应该把注意力集中在小母牛身上。目前只有在疾病晚期才能检测到跛行,此时疼痛导致奶牛行走时步态发生改变。在此阶段之前尽早检测跛行的能力将是对当前情况的巨大进步,从而改善健康、福利和生产力。代谢组学是一种允许遗传和非遗传因素的最终产物(代谢组)的技术影响要测量的疾病风险。通过比较患病个体和健康个体的代谢组,可以识别疾病的特征(生物标志物)。为了进行这些比较,可以使用复杂的统计方法;统计学和代谢组学的强大结合可以识别疾病生物标志物,并进一步了解导致疾病风险的过程。我们之前的工作表明,通过使用这种方法,根据产犊前(跛行前 1 - 10 周)收集的尿液样本的代谢组,可以以 93% 的准确度预测跛行。该项目将利用代谢组学和人工智能的创新组合来识别奶牛跛行的生物标志物。将对 160 头奶牛进行长期监测(每只动物长达 305 天或一次哺乳期),定期收集尿液、血浆和牛奶样本以及与跛行、健康和生产相关的数据;为当前和未来的项目提供宝贵的资源。配对样品将从跛行和非跛行的第一泌乳牛中选择,在第一例跛行之前不久和产犊之前。这些时间点被选择为对于导致跛行的病变的发展很重要。将开发计算模型,通过比较患病个体和健康个体的代谢组来预测跛行的发生;识别代谢组中预测跛行的信号,并利用这些信号来了解发生的疾病过程。结果将为了解导致奶牛跛行的疾病途径以及预测疾病风险的能力提供重要的见解。这反过来将为疾病管理提供信息,并提供早期预测跛行的工具,从而使奶牛跛行的检测和管理发生重大变化。该方法适用于牲畜和人类的许多其他复杂疾病,并将在未来的工作中进一步利用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Laura Randall其他文献
Alcohol's acute effect on food intake is mediated by inhibitory control impairments.
酒精对食物摄入的急性影响是由抑制控制损伤介导的。
- DOI:
10.1037/hea0000320 - 发表时间:
2016-05-18 - 期刊:
- 影响因子:0
- 作者:
P. Christiansen;A. Rose;Laura Randall;C. Hardman - 通讯作者:
C. Hardman
Laura Randall的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于代谢-转录组学的汉防己良种基因筛选及优质药材形成的分子机制研究
- 批准号:82360749
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于中医方证代谢组学的鸡骨草胶囊质量标志物研究
- 批准号:82360767
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于谱效关系与代谢组学探究藏红曲抗非酒精性脂肪肝的物质基础及作用机制
- 批准号:82360825
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于靶向代谢组学对携带MYH7基因突变的肥厚型心肌病患者不完全外显的机制研究
- 批准号:82371974
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于空间脂质组学揭示血必净经P53-SLC7A11-ALOX12通路抗脓毒症肺损伤磷脂代谢-铁死亡稳态的药效物质与作用机制
- 批准号:82374018
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Integrating multi-omics, imaging, and longitudinal data to predict radiation response in cervical cancer
整合多组学、成像和纵向数据来预测宫颈癌的放射反应
- 批准号:
10734702 - 财政年份:2023
- 资助金额:
$ 85.56万 - 项目类别:
Gene Coexpression Network Regulating Repetitive Behavior under Nutritional Change.
营养变化下调节重复行为的基因共表达网络。
- 批准号:
10737180 - 财政年份:2023
- 资助金额:
$ 85.56万 - 项目类别:
Characterizing chronic lung disease in youth living with HIV: quantitative chest CT analyses
描述青年艾滋病毒感染者慢性肺部疾病的特征:定量胸部 CT 分析
- 批准号:
10541238 - 财政年份:2022
- 资助金额:
$ 85.56万 - 项目类别:
HCC Risk Stratification in MAFLD Cirrhosis
MAFLD 肝硬化的 HCC 风险分层
- 批准号:
10410750 - 财政年份:2022
- 资助金额:
$ 85.56万 - 项目类别:
Searching the blood metabolome to identify risk biomarkers for biliary tract cancer
搜索血液代谢组以确定胆道癌的风险生物标志物
- 批准号:
10453004 - 财政年份:2022
- 资助金额:
$ 85.56万 - 项目类别: