Emergent embodied cognition in shallow, biological and artificial, neural networks

浅层生物和人工神经网络中的突现认知

基本信息

  • 批准号:
    BB/X01343X/1
  • 负责人:
  • 金额:
    $ 25.49万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Natural intelligence has been shaped by evolution for specific tasks in specific environments and to be adaptable to allow for lifelong rapid and robust learning. These properties of cognition are not reserved for animals with large brains. Insects such as ants and bees show impressive cognitive performance within their natural foraging behaviours. For instance, bees are expert navigators and can learn multiple complex routes based on visual memories. Similarly, bees are able to rapidly learn the floral patterns of rewarding flowers from which to collect nectar and pollen. We believe that the impressive performance of insects on such tasks arises from specialisation. That is, evolution has shaped sensors, neural circuits and behaviours for solving flower learning and navigation tasks. Consequently, bees show better-than-human performance on some tasks despite having brains a million times smaller. It is thus crucially important to understand how sensory systems and learning strategies can be adapted to tasks and environments, such that small neural circuits produce complex cognition. In this project, we will leverage recent advances in the speed of computational neuroscience simulations to systematically investigate the emergence of cognition in small neural networks and to tease apart the contribution of body, brain and environment. While these issues are relevant to all animals, we will focus on insects. It is easier to determine neuroanatomy and observe neurophysiology in insects than vertebrates, and we have detailed descriptions of the neural circuits involved in cognition (sensory lobes, learning centres and motor control regions). Furthermore, the specific behaviours where insects demonstrate impressive cognition are very well described in the lab and in the wild. In both these regards, our understanding of insects is more detailed and comprehensive than for vertebrate model systems. Insect brains are not only small but also shallow. There are only a few layers of processing between sensory systems and motor output. We hypothesise that these shallow learning networks work so well because they are interacting with carefully tuned sensory systems and behaviours. In order to decipher these complex interactions we will create a simulated world and spiking neural network model of key insect brain regions. With this model, we will investigate properties of visual cognition in tasks inspired by the foraging of bees. Our bee-like agents will move in a 3D simulated world, with a sensory system which replicates insect vision and learning implemented as models of the Mushroom Bodies (the insect learning circuits). Crucially, we will independently manipulate these components and use optimisation methods to ask what classes of sensory system and behaviour produce the best learning performance.Investigations of this kind have been envisioned before. However, to computationally determine the contribution of brain body and environment to cognition necessitates optimisation of multiple parameters at different levels of the agent. Optimisation methods for such multi-level problems exist (meta-learning or learning to learn algorithms) but common to these approaches is the need for very large numbers of evaluations. It is only now that we can explore these questions, in part due to increases in computational power, but also in conjunction with our recent breakthroughs in the speed of spiking neural network simulations on GPUs and insect-eye rendering technology. We therefore have the opportunity to investigate the relationships between sensory environment, brains and behaviour in detailed models of insect visual cognition. The understanding of how intelligence emerges from shallow neural networks will be fundamental to neuroscience and cognitive science, but also has the potential to produce more natural AI algorithms.
自然智能是通过特定环境中特定任务的进化而形成的,并且能够适应终生快速和稳健的学习。这些认知特性并不是为大脑较大的动物所保留的。蚂蚁和蜜蜂等昆虫在自然觅食行为中表现出令人印象深刻的认知表现。例如,蜜蜂是导航专家,可以根据视觉记忆学习多条复杂的路线。同样,蜜蜂能够快速学习奖励花朵的花型,并从中收集花蜜和花粉。我们相信昆虫在此类任务上的出色表现源于专业化。也就是说,进化塑造了用于解决花卉学习和导航任务的传感器、神经回路和行为。因此,尽管蜜蜂的大脑小一百万倍,但在某些任务上表现出比人类更好的表现。因此,了解感觉系统和学习策略如何适应任务和环境,从而使小型神经回路产生复杂的认知至关重要。在这个项目中,我们将利用计算神经科学模拟速度的最新进展,系统地研究小型神经网络中认知的出现,并梳理身体、大脑和环境的贡献。虽然这些问题与所有动物有关,但我们将重点关注昆虫。与脊椎动物相比,确定昆虫的神经解剖学和观察神经生理学更容易,并且我们对参与认知的神经回路(感觉叶、学习中心和运动控制区)有详细的描述。此外,昆虫表现出令人印象深刻的认知的具体行为在实验室和野外都有很好的描述。在这两方面,我们对昆虫的了解比脊椎动物模型系统更加详细和全面。昆虫的大脑不仅小而且浅。感觉系统和运动输出之间只有几层处理。我们假设这些浅层学习网络运作良好,因为它们与精心调整的感觉系统和行为相互作用。为了破译这些复杂的相互作用,我们将创建一个模拟世界和关键昆虫大脑区域的尖峰神经网络模型。通过这个模型,我们将研究受蜜蜂觅食启发的任务中的视觉认知特性。我们的类似蜜蜂的智能体将在 3D 模拟世界中移动,其感觉系统可以复制昆虫的视觉和学习能力,并以蘑菇体模型(昆虫学习电路)的形式实现。至关重要的是,我们将独立操纵​​这些组件,并使用优化方法来询问哪些类别的感觉系统和行为能够产生最佳的学习表现。以前已经设想过此类研究。然而,要通过计算确定脑体和环境对认知的贡献,需要优化代理不同级别的多个参数。存在针对此类多级问题的优化方法(元学习或学习算法),但这些方法的共同点是需要大量评估。直到现在我们才能够探索这些问题,部分原因是计算能力的提高,同时也结合了我们最近在 GPU 和昆虫眼渲染技术上的尖峰神经网络模拟速度方面的突破。因此,我们有机会在昆虫视觉认知的详细模型中研究感官环境、大脑和行为之间的关系。了解智能如何从浅层神经网络中产生将是神经科学和认知科学的基础,而且还有可能产生更自然的人工智能算法。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Paul Graham其他文献

Prosthetics services in Uganda : a series of studies to inform the design of a low cost, but fit-for-purpose, body-powered prosthesis
乌干达的假肢服务:一系列研究为设计低成本但适合用途的身体动力假肢提供信息
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Kenney;R. Ssekitoleko;A. Chadwell;L. Ackers;Maggie R. Donovan;Hall;Dafne Zuleima Morgado Ramirez;C. Holloway;Paul Graham;Alan;Cockcroft;Bernadette Deere;S. McCormack;A. Semwanga;Gizamba Mafabi;Henry;Kalibbala Mark Giggs
  • 通讯作者:
    Kalibbala Mark Giggs
Measurement‐Based Synthesis of Facial Microgeometry
基于测量的面部微观几何形状综合
  • DOI:
    10.1111/cgf.12053
  • 发表时间:
    2012
  • 期刊:
  • 影响因子:
    2.5
  • 作者:
    Paul Graham;Borom Tunwattanapong;Jay Busch;Xueming Yu;Andrew Jones;P. Debevec;A. Ghosh
  • 通讯作者:
    A. Ghosh
First Data Investigation on the Grid: FirstDIG
网格上的首次数据调查:FirstDIG
  • DOI:
  • 发表时间:
    2003
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Terry Sloan;Adam Carter;Paul Graham;D. Unwin;I. Gregory
  • 通讯作者:
    I. Gregory
Applying the Grid to 3D capture technology
将Grid应用于3D捕捉技术
  • DOI:
    10.1002/cpe.1043
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    L. Mackenzie;P. Cockshott;V. Yarmolenko;E. Borland;Paul Graham;K. Kavoussanakis
  • 通讯作者:
    K. Kavoussanakis
Control of Residential Battery Charge Scheduling using Machine Learning
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Paul Graham
  • 通讯作者:
    Paul Graham

Paul Graham的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Paul Graham', 18)}}的其他基金

Visual navigation in ants: from visual ecology to brain
蚂蚁的视觉导航:从视觉生态到大脑
  • 批准号:
    BB/R005036/1
  • 财政年份:
    2018
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Research Grant
How do ants use encode & identify natural panoramic scenes?
蚂蚁如何使用encode
  • 批准号:
    BB/H013644/1
  • 财政年份:
    2010
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Research Grant

相似国自然基金

微腔辅助平带光晶格中超冷原子的奇异多体现象
  • 批准号:
  • 批准年份:
    2019
  • 资助金额:
    18 万元
  • 项目类别:
    专项基金项目
学术论文影响力的四维测度:引文综合评估、社交网络评议、同行直接评价和期刊间接体现
  • 批准号:
    71874173
  • 批准年份:
    2018
  • 资助金额:
    48.0 万元
  • 项目类别:
    面上项目
基于微流控生物传感技术的多种特殊病原体现场快速一体化检测
  • 批准号:
    81871738
  • 批准年份:
    2018
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目
关于胶质瘤微环境中星形细胞分泌保护性线粒体现象及机制的研究
  • 批准号:
    81702469
  • 批准年份:
    2017
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
医患共建平行病历体现中医临床真实疗效的整体评价方法构建
  • 批准号:
    81774146
  • 批准年份:
    2017
  • 资助金额:
    57.0 万元
  • 项目类别:
    面上项目

相似海外基金

A Cognition-based Model for More Forgiving Human-Machine Interactions through Embodied Cooperation
基于认知的模型,通过具体合作实现更宽容的人机交互
  • 批准号:
    2211906
  • 财政年份:
    2023
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Standard Grant
臨床群を対象とした心的視点取得の個人内メカニズムの解明と促進方法の開発
阐明心理视角获取的个体内部机制并开发临床群体的促进方法
  • 批准号:
    22KK0223
  • 财政年份:
    2023
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Fund for the Promotion of Joint International Research (Fostering Joint International Research (A))
Identifying the neurostructural determinants of minimal cognition using embodied 3D bioengineered brain models
使用具体的 3D 生物工程大脑模型识别最小认知的神经结构决定因素
  • 批准号:
    DGECR-2022-00278
  • 财政年份:
    2022
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Discovery Launch Supplement
Canada Research Chair in Embodied and Embedded Cognition
加拿大具身和嵌入式认知研究主席
  • 批准号:
    CRC-2018-00098
  • 财政年份:
    2022
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Canada Research Chairs
Identifying the neurostructural determinants of minimal cognition using embodied 3D bioengineered brain models
使用具体的 3D 生物工程大脑模型识别最小认知的神经结构决定因素
  • 批准号:
    RGPIN-2022-04162
  • 财政年份:
    2022
  • 资助金额:
    $ 25.49万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了