Microbial carbon cycling under geological CO2 storage conditions: understanding the rules of life in the engineered subsurface
地质二氧化碳储存条件下的微生物碳循环:了解工程地下的生命规则
基本信息
- 批准号:BB/V00560X/1
- 负责人:
- 金额:$ 123.27万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Fellowship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In recognition of the growing global climate emergency caused by the increase in carbon dioxide (CO2) emissions from fossil fuel use, the UK government recently passed into law a commitment to reach net zero emissions by 2050. This ambitious target not only calls for a transition from fossil fuels to renewable energy, but also for the direct removal of CO2 emissions from the atmosphere. A compelling way to do this is with carbon capture and storage, whereby CO2 from fossil fuel use is captured at source (for example power plants and cement factories) and transported for safe storage 0.8 km or more beneath the surface of the Earth. In order for this carbon capture and storage approach to succeed, captured CO2 must be injected into deep geological formations, such as high salinity sandstone aquifers, on a permanent basis. These formations have the right geological characteristics for CO2 storage, and numerous pilot projects have demonstrated that the injection of large volumes of CO2 into these subsurface environments is possible. However, recent research has shown that these subsurface environments are inhabited by diverse and active communities of microorganisms, and the impacts of microbial activity in a deep geological CO2 storage environment are not known.Microorganisms are capable of using CO2 for their metabolism, and the injection of CO2 into deep subsurface environments is likely to cause a shift in the composition and function of microbial communities towards those capable of exploiting CO2 for growth. This could result in positive impacts, such as enhanced sequestration of CO2 and conversion into biomass (akin to locking away CO2 by planting trees), or negative impacts, such as the production of extra gases that may trigger leakages from the storage reservoir. The research I propose to conduct is designed to better understand the role of microorganisms in a geological CO2 storage facility, and to identify ways in which microorganisms might be harnessed to lock away more CO2 in these environments and even convert waste CO2 into useful chemicals, such as biofuels. I will mimic the conditions of a deep geological CO2 storage reservoir using bespoke 'bioreactors' that allow microbial communities to be studied under the elevated temperatures and pressures common to the subsurface. Throughout these experiments, and in follow-on targeted experiments, I will apply state-of-the-art geochemical and 'omics' techniques to monitor changes to the chemistry and microbiology of the system. A particular focus of this work is to understand how individual organisms in a microbial community work together in driving metabolic processes. These interactions occur in all microbial communities, but are not well understood. Using cutting-edge tools, I will identify and characterise these interactions and in doing so unearth the role of these microbial processes on CO2 storage in unprecedented detail. These results will be used to develop computer models of these communities, enabling predictions to be made on the role of these microbial communities under different conditions. Using these predictions, we can learn how to harness the power of microorganisms in the subsurface to help the UK reach its zero emissions target by 2050.
认识到化石燃料使用造成的二氧化碳 (CO2) 排放量增加导致全球气候紧急情况日益严重,英国政府最近通过法律承诺到 2050 年实现净零排放。这一雄心勃勃的目标不仅要求转型从化石燃料到可再生能源,还可以直接消除大气中的二氧化碳排放。实现这一目标的一个令人信服的方法是碳捕获和储存,即在源头(例如发电厂和水泥厂)捕获化石燃料使用中产生的二氧化碳,并将其运输到地球表面以下 0.8 公里或更深处进行安全储存。为了使这种碳捕获和储存方法取得成功,捕获的二氧化碳必须永久注入深层地质构造,例如高盐度砂岩含水层。这些地层具有适合二氧化碳封存的地质特征,许多试点项目已经证明,将大量二氧化碳注入这些地下环境是可能的。然而,最近的研究表明,这些地下环境栖息着多样化且活跃的微生物群落,而微生物活动对深层地质CO2储存环境的影响尚不清楚。微生物能够利用CO2进行新陈代谢,并且注入二氧化碳将二氧化碳排放到深层地下环境可能会导致微生物群落的组成和功能向那些能够利用二氧化碳生长的微生物转变。这可能会产生积极影响,例如增强二氧化碳封存和转化为生物质(类似于通过植树锁定二氧化碳),也可能产生负面影响,例如产生额外的气体,可能引发储库泄漏。我建议进行的研究旨在更好地了解微生物在地质二氧化碳封存设施中的作用,并确定如何利用微生物在这些环境中锁住更多二氧化碳,甚至将废弃二氧化碳转化为有用的化学品,例如作为生物燃料。我将使用定制的“生物反应器”模拟深层地质二氧化碳储存库的条件,使微生物群落能够在地下常见的高温和高压下进行研究。在整个这些实验以及后续的有针对性的实验中,我将应用最先进的地球化学和“组学”技术来监测系统化学和微生物学的变化。这项工作的一个特别重点是了解微生物群落中的个体生物体如何共同驱动代谢过程。这些相互作用发生在所有微生物群落中,但尚不清楚。我将使用尖端工具来识别和描述这些相互作用,并以此以前所未有的细节揭示这些微生物过程对二氧化碳储存的作用。这些结果将用于开发这些群落的计算机模型,从而能够预测这些微生物群落在不同条件下的作用。利用这些预测,我们可以了解如何利用地下微生物的力量来帮助英国在 2050 年实现零排放目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sophie Nixon其他文献
Sophie Nixon的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sophie Nixon', 18)}}的其他基金
Rules of life in CO2-driven microbial communities: Microbiome engineering for a Net Zero future
二氧化碳驱动的微生物群落的生命规则:净零未来的微生物组工程
- 批准号:
BB/Y003195/1 - 财政年份:2024
- 资助金额:
$ 123.27万 - 项目类别:
Research Grant
Unearthing the role of microbiology in shale gas extraction: a bioreactor approach
挖掘微生物学在页岩气开采中的作用:生物反应器方法
- 批准号:
NE/R013462/1 - 财政年份:2018
- 资助金额:
$ 123.27万 - 项目类别:
Fellowship
相似国自然基金
sp3非晶碳力学和热学性质的优化调控与大块体制备研究
- 批准号:12304015
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
衣康酸碳点通过Nrf2-TFAM通路调控线粒体代谢治疗种植体周围炎的机制研究
- 批准号:82301131
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
富水岩体采动裂隙碳纳米复合浆体强化效应定量表征方法
- 批准号:52374085
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
固碳微晶轻骨料微结构调控及其作用机制研究
- 批准号:52308275
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
再生固碳胶凝材料矿物活性提升及多晶型碳化产物形成机制
- 批准号:52378229
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Microbial carbon cycling in marine environments: linking micro-scale processes to global carbon dynamics
海洋环境中的微生物碳循环:将微观过程与全球碳动态联系起来
- 批准号:
RGPIN-2019-04228 - 财政年份:2022
- 资助金额:
$ 123.27万 - 项目类别:
Discovery Grants Program - Individual
The role of plant and soil microbial diversity in regulating soil carbon and nutrient cycling
植物和土壤微生物多样性在调节土壤碳和养分循环中的作用
- 批准号:
576662-2022 - 财政年份:2022
- 资助金额:
$ 123.27万 - 项目类别:
Banting Postdoctoral Fellowships Tri-council
Novel forestry practices for mitigating global change: investigating effects of legacy trees on plant-soil microbial networks, carbon cycling and forest recovery
减缓全球变化的新型林业实践:调查遗留树木对植物-土壤微生物网络、碳循环和森林恢复的影响
- 批准号:
RGPIN-2022-03502 - 财政年份:2022
- 资助金额:
$ 123.27万 - 项目类别:
Discovery Grants Program - Individual
Microbial carbon cycling in marine environments: linking micro-scale processes to global carbon dynamics
海洋环境中的微生物碳循环:将微观过程与全球碳动态联系起来
- 批准号:
RGPIN-2019-04228 - 财政年份:2022
- 资助金额:
$ 123.27万 - 项目类别:
Discovery Grants Program - Individual
Effects of phytoplankton and microbial physiology on surface ocean carbon cycling under climate change conditions
气候变化条件下浮游植物和微生物生理对表层海洋碳循环的影响
- 批准号:
559673-2021 - 财政年份:2022
- 资助金额:
$ 123.27万 - 项目类别:
Postgraduate Scholarships - Doctoral