SUMOcode: deciphering how SUMOylation enables plants to adapt to their environment
SUMOcode:解读 SUMOylation 如何使植物适应环境
基本信息
- 批准号:BB/V003534/1
- 负责人:
- 金额:$ 464.75万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
At a basic level the rules that govern life is defined by an organism's genetic code (like the text of a book) and the signals it receives from the environment (like the interpretation of the reader of the text). The combination of these two (the genetic code and the signals) makes an organism behave and develop the way it does. At a molecular level there are several critical systems that control the way an organism responds to its environment. These can be (1) long-term responses through the silencing of the genetic code (like removing parts of the text in the book so it can't be interpreted) or (2) more rapid responses through modifications of the system (like annotation to parts of the text of a book which changes the way it is interpreted). Understanding these responses is essential to our understanding of how an organism functions and how an organism changes based on their environment. Here we are focusing on the second type of response, which at a molecular level are initiated by "post-translational modifications (PTMs)" (this a way of changing the function of the existing machinery in a cell). PTMs act at the core of every biological system. Taking signals from outside the cell and "coding" molecular interactions to change the way cells function. This is critical in every biological process. There are several types of PTMs, but one of the most important but whose code is not defined is SUMOylation. Here we aim to take a holistic approach to understanding the SUMO code.In this programme we will develop a SUMO machinery cell atlas (a resource that will characterize each part of the machinery), how, in which cells and when it works, so that a map of the key events that trigger a SUMOylation response to environmental cues can be revealed. We will use the model plant, Arabidopsis, arguably the best non-human, multicellular organism for this scale of interrogation. It has a plethora of tools and resources that will allow us to dissect the SUMO code in detail and across different cell types, different stages of development and across different response times. This mapping of SUMOylation will reveal the 'hubs' that the SUMO machinery targets to cause a cellular response, revealing how the pathway functions and how it can be manipulated to combat environmental challenges or disease. SUMOylation has already been shown by our group and others that it is important for the way a cell responds to environmental stresses. For example, plants adapt to changes in their environment (heat, water availability, salt, etc) by modifying their growth and development (to enhance their ability to survive and flourish), through PTMs like SUMOylation. Therefore, a key output of this programme will be a set of tools that will translate the SUMO language across the plant kingdom and provide insights into animal and human health and disease. Our ultimate goal is to 'enable' researchers from a range of disciplines, plant breeders, chemical companies and beyond to edit the SUMO code discovered here to improve crop resilience, future proofing them against ongoing climate instability and change, and to catalyse new insights across plants and animals into the rules that govern an organisms behaviour and responses to the environment that surrounds them.
在基本层面上,控制生命的规则是由生物体的遗传密码(如书籍的文本)和它从环境接收的信号(如文本读者的解释)定义的。这两者(遗传密码和信号)的结合使有机体按照其方式行事和发展。在分子水平上,有几个关键系统控制着有机体对其环境的反应方式。这些可以是(1)通过沉默遗传密码(如删除书中的部分文本,使其无法被解释)的长期反应,或(2)通过修改系统(如注释)的更快速反应书的部分文本改变了它的解释方式)。了解这些反应对于我们了解有机体如何发挥作用以及有机体如何根据其环境而变化至关重要。在这里,我们关注第二种类型的反应,这种反应在分子水平上是由“翻译后修饰(PTM)”(这是改变细胞中现有机制的功能的一种方式)引发的。 PTM 是每个生物系统的核心。从细胞外部获取信号并“编码”分子相互作用来改变细胞的功能方式。这对于每个生物过程都至关重要。 PTM 有多种类型,但最重要但其代码未定义的一种是 SUMOylation。在这里,我们的目标是采取整体方法来理解 SUMO 代码。在这个项目中,我们将开发一个 SUMO 机械单元图集(一种描述机械每个部分特征的资源),了解它如何工作、在哪些单元中工作以及何时工作,以便可以揭示触发对环境线索的 SUMOylation 反应的关键事件图。我们将使用模型植物拟南芥,它可以说是这种规模的审讯中最好的非人类多细胞生物。它拥有大量的工具和资源,使我们能够跨不同的细胞类型、不同的发育阶段和不同的响应时间详细剖析 SUMO 代码。 SUMO 化的这种映射将揭示 SUMO 机制引起细胞反应的目标“中心”,揭示该途径如何发挥作用以及如何操纵它来对抗环境挑战或疾病。我们的团队和其他人已经证明 SUMO 化对于细胞对环境压力的反应方式很重要。例如,植物通过 SUMOylation 等 PTM 改变其生长和发育(以增强其生存和繁盛的能力)来适应环境的变化(热量、水供应、盐等)。因此,该计划的一个关键成果将是一套工具,可以在整个植物界翻译 SUMO 语言,并提供对动物和人类健康和疾病的见解。我们的最终目标是“使”来自不同学科、植物育种家、化学公司等领域的研究人员能够编辑此处发现的 SUMO 代码,以提高作物的恢复能力,使其能够抵御持续的气候不稳定和变化,并促进跨领域的新见解将植物和动物纳入控制生物体行为和对其周围环境的反应的规则中。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Turning up the volume: How root branching adaptive responses aid water foraging.
调高音量:根分枝适应性反应如何帮助水觅食。
- DOI:10.1016/j.pbi.2023.102405
- 发表时间:2023-06-26
- 期刊:
- 影响因子:9.5
- 作者:P. Mehra;Rebecca Fairburn;N. Leftley;Jason B;a;a;M. Bennett
- 通讯作者:M. Bennett
Hydraulic flux-responsive hormone redistribution determines root branching.
水力通量响应激素的重新分配决定根的分枝。
- DOI:http://dx.10.1126/science.add3771
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Mehra P
- 通讯作者:Mehra P
The conjugation of SUMO to the transcription factor MYC2 functions in blue light-mediated seedling development in Arabidopsis.
SUMO 与转录因子 MYC2 的结合在蓝光介导的拟南芥幼苗发育中发挥作用。
- DOI:http://dx.10.1093/plcell/koac142
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Srivastava M
- 通讯作者:Srivastava M
Non-invasive hydrodynamic imaging in plant roots at cellular resolution.
以细胞分辨率对植物根部进行非侵入性流体动力学成像。
- DOI:http://dx.10.1038/s41467-021-24913-z
- 发表时间:2021
- 期刊:
- 影响因子:16.6
- 作者:Pascut FC
- 通讯作者:Pascut FC
Light regulates xylem cell differentiation via PIF in Arabidopsis
光通过 PIF 调节拟南芥木质部细胞分化
- DOI:10.1016/j.celrep.2022.111075
- 发表时间:2022-07-19
- 期刊:
- 影响因子:8.8
- 作者:Ghosh, Shraboni;Nelson, Joseph F.;Cobb, Geoffrey M. C.;Etchells, J. Peter;de Lucas, Miguel
- 通讯作者:de Lucas, Miguel
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ari Sadanandom其他文献
Ari Sadanandom的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ari Sadanandom', 18)}}的其他基金
High sensitivity LC-MS to understand the role of Proteomes in the rules of life for Plant scientists and N8 partners
高灵敏度 LC-MS 可帮助植物科学家和 N8 合作伙伴了解蛋白质组在生命规则中的作用
- 批准号:
BB/W019825/1 - 财政年份:2022
- 资助金额:
$ 464.75万 - 项目类别:
Research Grant
Divining roots: uncovering how SUMO mediated responses control developmental plasticity
探究根源:揭示 SUMO 介导的反应如何控制发育可塑性
- 批准号:
BB/T003022/1 - 财政年份:2020
- 资助金额:
$ 464.75万 - 项目类别:
Research Grant
A Decision Support tool for Potato Blackleg Disease (DeS-BL)
马铃薯黑胫病决策支持工具 (DeS-BL)
- 批准号:
BB/T010533/1 - 财政年份:2020
- 资助金额:
$ 464.75万 - 项目类别:
Research Grant
Charting the protein modifications systems that underpin submergence tolerance in rice
绘制支撑水稻耐淹性的蛋白质修饰系统
- 批准号:
BB/R002754/1 - 财政年份:2017
- 资助金额:
$ 464.75万 - 项目类别:
Research Grant
Hydro-patterning: a novel mechanism controlling root branching
水力图案:控制根分枝的新机制
- 批准号:
BB/M002136/1 - 财政年份:2015
- 资助金额:
$ 464.75万 - 项目类别:
Research Grant
Nitrogen availability influences Septoria defence in wheat by modulating WRKY transcription factor gene expression.
氮可用性通过调节 WRKY 转录因子基因表达来影响小麦壳针孢防御。
- 批准号:
BB/M022048/1 - 财政年份:2015
- 资助金额:
$ 464.75万 - 项目类别:
Research Grant
相似国自然基金
发展化学酶法聚糖编辑新技术以破译和干预半乳凝素介导的T细胞免疫抑制
- 批准号:32150027
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
破译疾病组合之遗传结构:新分析框架及在心血管医学和精神病学中的应用
- 批准号:31900495
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
集成纳米机器人的蛋白质折叠密码破译芯片设计与制造的基础理论研究
- 批准号:51905097
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
iRhom2:破译葫芦巴散抑制TACE介导的肥胖相关性炎症的关键密码
- 批准号:81573765
- 批准年份:2015
- 资助金额:52.0 万元
- 项目类别:面上项目
Rijndael算法的新型破译方法及应用研究
- 批准号:60903199
- 批准年份:2009
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Deciphering plant stress memory: the exploration of how DNA methylation and the rhizosphere microbiome control stress memory in plants
解读植物逆境记忆:探索DNA甲基化和根际微生物如何控制植物逆境记忆
- 批准号:
BB/Z514810/1 - 财政年份:2024
- 资助金额:
$ 464.75万 - 项目类别:
Fellowship
Deciphering how 3D genome organization orchestrates cardiac cellular identity
解读 3D 基因组组织如何协调心脏细胞身份
- 批准号:
10574267 - 财政年份:2023
- 资助金额:
$ 464.75万 - 项目类别:
CAREER Deciphering how enhancers encode tissue-specificity and phenotypes
破译增强子如何编码组织特异性和表型
- 批准号:
2239957 - 财政年份:2022
- 资助金额:
$ 464.75万 - 项目类别:
Continuing Grant
Deciphering the Miracle on the Han: Lessons for the World on How South Korea Escaped Poverty and Transformed its Economy
解读韩国奇迹:韩国如何摆脱贫困并实现经济转型给世界的教训
- 批准号:
ES/W011360/1 - 财政年份:2022
- 资助金额:
$ 464.75万 - 项目类别:
Research Grant
How do molluscs build their shells? Deciphering calcium transport mechanisms in shellfish biomineralisation using genome-editing
软体动物如何建造贝壳?
- 批准号:
2607462 - 财政年份:2021
- 资助金额:
$ 464.75万 - 项目类别:
Studentship