The structural basis for the mechanism of directional DNA recombination

DNA定向重组机制的结构基础

基本信息

  • 批准号:
    BB/W017571/1
  • 负责人:
  • 金额:
    $ 66.4万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Bacteriophages ('phages') are viruses that infect bacteria. To ensure their long-term survival, many phages join their own DNA with that of their host cell, a process known as integration. The phage DNA then gets copied each time the cell's DNA is copied. Integration is brought about by a mechanism called site-specific recombination: an enzyme (integrase) promotes breaking and rejoining of DNA strands at two specific places (sites) in the phage and the host DNA, thus splicing the two together. At some point the phage re-forms infectious virus particles by cutting its DNA back out of the host genome (excision), and this is also promoted by the integrase. Conveniently, integration and excision systems can be made to work in the lab without needing phages or bacteria; we can use purified short pieces of DNA containing the sites that integrase recognizes and binds to, and purified proteins. One family of these enzymes called the serine integrases has proved to be of great interest to scientists because of its highly 'one-way' reactions; on its own a serine integrase promotes integration but not excision, whereas when another phage protein called RDF (recombination directionality factor) is present it behaves exactly the opposite, promoting excision but not integration. This behaviour means that these systems can be used as fully controllable two-way switches. These can be used for the construction of many sorts of useful biological devices including DNA-based analogues of electronic computers, where the switch can act as a binary digit (1 or 0). Combinations of switches can then allow living cells, such as bacteria or yeast, to process information and make simple decisions, with potentially useful applications in biotechnology and medicine.To maximize the usefulness of serine integrases we should understand exactly how they work; but their 'one-way switch' properties are still quite mysterious. The big aim of the research proposed here is to reveal the structures of the protein + DNA 'complexes' that serine integrases form when they recognize their DNA target sites and bring them together to perform DNA strand breaking and rejoining. To do this we will use a state-of-the-art technology called cryo-electron microscopy (cryo-EM), which involves the imaging of individual protein-DNA complexes and the analysis of individual copies of these assemblies to obtain a three-dimensional structure. This structural information will reveal for the first time how the integrase enzymes bring about one-way recombination. We can then test our new ideas about the mechanism by experiments in the lab, where we modify the proteins or the DNA and see what the effects are on the recombination reactions. Once we know these details, we can design new integrase-based systems for optimum performance in synthetic biological devices, and potentially think of ways to incorporate serine integrase modules into larger/more complex systems.This research will be carried out at the University of Glasgow in the laboratories of Dr. Laura Spagnolo, a specialist in determining the structures of protein-DNA complexes using cryo-EM, with support from Dr. Sean Colloms and Professor Marshall Stark who are experts in the field of site-specific recombination. The cryoEM work will be carried out at the Scottish Centre for Macromolecular Imaging (SCMI) at the University of Glasgow using the very latest cryo-EM equipment.
噬菌体(“噬菌体”)是感染细菌的病毒。为了确保它们的长期生存,许多噬菌体将自己的 DNA 与宿主细胞的 DNA 连接起来,这一过程称为整合。每次细胞 DNA 被复制时,噬菌体 DNA 都会被复制。整合是通过一种称为位点特异性重组的机制实现的:酶(整合酶)促进噬菌体和宿主 DNA 中两个特定位置(位点)的 DNA 链断裂和重新连接,从而将两者拼接在一起。在某些时候,噬菌体通过将其 DNA 从宿主基因组中切除(切除)来重新形成感染性病毒颗粒,这也是由整合酶促进的。方便地,整合和切除系统可以在实验室中工作,而不需要噬菌体或细菌;我们可以使用含有整合酶识别和结合位点的纯化短DNA片段以及纯化的蛋白质。丝氨酸整合酶是这些酶中的一个家族,由于其高度“单向”反应,已被证明引起了科学家的极大兴趣。丝氨酸整合酶本身促进整合,但不促进切除,而当另一种称为 RDF(重组方向性因子)的噬菌体蛋白存在时,它的行为恰恰相反,促进切除,但不促进整合。这种行为意味着这些系统可以用作完全可控的双向开关。这些可用于构建多种有用的生物设备,包括基于 DNA 的电子计算机类似物,其中开关可以充当二进制数字(1 或 0)。然后,开关的组合可以让细菌或酵母等活细胞处理信息并做出简单的决定,在生物技术和医学方面具有潜在的有用应用。为了最大限度地发挥丝氨酸整合酶的用途,我们应该准确地了解它们的工作原理;但它们的“单向开关”特性仍然相当神秘。这里提出的研究的主要目标是揭示蛋白质+DNA“复合物”的结构,丝氨酸整合酶在识别其DNA靶位点并将它们结合在一起以执行DNA链断裂和重新连接时形成。为此,我们将使用一种称为冷冻电子显微镜 (cryo-EM) 的最先进技术,该技术涉及对单个蛋白质-DNA 复合物进行成像并对这些组件的各个副本进行分析,以获得三-维度结构。这一结构信息将首次揭示整合酶如何实现单向重组。然后,我们可以通过实验室实验来测试我们关于该机制的新想法,我们修改蛋白质或 DNA,看看对重组反应有何影响。一旦我们了解了这些细节,我们就可以设计新的基于整合酶的系统,以在合成生物装置中实现最佳性能,并可能考虑将丝氨酸整合酶模块整合到更大/更复杂的系统中的方法。这项研究将在格拉斯哥大学进行在 Laura Spagnolo 博士的实验室中,Laura Spagnolo 博士是使用冷冻电镜确定蛋白质-DNA 复合物结构的专家,并得到了 Sean Colloms 博士和 Marshall Stark 教授的支持,他们是位点特异性领域的专家重组。冷冻电镜工作将在格拉斯哥大学苏格兰高分子成像中心 (SCMI) 使用最新的冷冻电镜设备进行。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Laura Spagnolo其他文献

Laura Spagnolo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Laura Spagnolo', 18)}}的其他基金

Elucidating the molecular architecture of the Archaeal CMR complex, a key player in the unicellular immune response.
阐明古菌 CMR 复合体的分子结构,该复合体是单细胞免疫反应的关键参与者。
  • 批准号:
    BB/J005673/2
  • 财政年份:
    2016
  • 资助金额:
    $ 66.4万
  • 项目类别:
    Research Grant
Elucidating the molecular architecture of the Archaeal CMR complex, a key player in the unicellular immune response.
阐明古菌 CMR 复合体的分子结构,该复合体是单细胞免疫反应的关键参与者。
  • 批准号:
    BB/J005673/1
  • 财政年份:
    2013
  • 资助金额:
    $ 66.4万
  • 项目类别:
    Research Grant

相似国自然基金

基于TRPV1-PPARs-SCD1-GLUTs介导糖脂代谢转运通路调控的地黄治疗糖尿病机制与药效物质基础研究
  • 批准号:
    82374133
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
“物质-代谢-效应”模式探索瑶药石柑子介导TLR4/NF-κB通路抗RA作用的药效物质基础及作用机制
  • 批准号:
    82304866
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血肿占位效应导致脑出血后神经功能障碍的环路基础及作用机制
  • 批准号:
    12372303
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
靶向MCL-1诱导线粒体自噬探讨五味子叶治疗AD三萜类药效物质基础及作用机制
  • 批准号:
    82374007
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
靶向“胃黏膜菌群—脑肠肽”互作研究黄芪干预慢性萎缩性胃炎伴情绪障碍的物质基础和作用机制
  • 批准号:
    82374025
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目

相似海外基金

Structural Basis and Molecular Mechanism of GPCR-Arrestin Interactions
GPCR-Arrestin 相互作用的结构基础和分子机制
  • 批准号:
    10713322
  • 财政年份:
    2023
  • 资助金额:
    $ 66.4万
  • 项目类别:
Structural basis for histone discrimination mechanism by FACT
FACT 组蛋白辨别机制的结构基础
  • 批准号:
    21K06021
  • 财政年份:
    2021
  • 资助金额:
    $ 66.4万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Structural basis of the gating mechanism of connexin 26 and related hearing loss
连接蛋白26门控机制及相关听力损失的结构基础
  • 批准号:
    10303738
  • 财政年份:
    2021
  • 资助金额:
    $ 66.4万
  • 项目类别:
Structural basis for ubiquitin recognition and catalytic mechanism of ubiquitin ligase Triad3
泛素连接酶Triad3识别泛素的结构基础及催化机制
  • 批准号:
    21K15084
  • 财政年份:
    2021
  • 资助金额:
    $ 66.4万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Structural basis of Cfr-mediated resistance to antibiotics targeting the bacterial ribosome
Cfr介导的针对细菌核糖体的抗生素耐药性的结构基础
  • 批准号:
    10282911
  • 财政年份:
    2021
  • 资助金额:
    $ 66.4万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了