Accelerating and enhancing the PSIPRED Workbench with deep learning
通过深度学习加速和增强 PSIPRED Workbench
基本信息
- 批准号:BB/T019409/1
- 负责人:
- 金额:$ 77.79万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the growing number of completely sequenced genomes, life scientists now face the challenge of characterizing the biological role of the encoded proteins as to advance our understanding of cell physiology. Most genes are designed to code for proteins which have useful functions in an organism. Proteins are essentially strings of simpler molecules, called amino acids and these strings can self-assemble into a complex 3-D structure as soon as the protein is formed by the protein-making machinery (ribosomes) in the cell. It is this unique structure which determines the precise chemical function of the protein (i.e. what is does in the cell and how it does it). By firing X-rays at crystallised proteins, scientists can determine their structure, but this process can take many months or even years. With hundreds of thousands of proteins for which the native structure is unknown, it is not surprising that scientists want to find a clever shortcut to working out the structure of proteins. We, like many other scientists have been trying to "crack the code" of protein structure i.e. working out the rules which govern how the protein finds its unique structure and then trying to program a computer with these rules to allow scientists to quickly "predict" what the structure of their protein of interest might be.The PSIPRED Workbench is a collection of Web servers maintained at UCL which does just this i.e. it allows biologists to predict the structure of their protein structure given just its amino acid sequence. Over the years it has helped many thousands of scientists with their work by providing these services and we now wish not only to upgrade and maintain these existing servers but also to implement new methods which allow the structures of even the most difficult proteins to be deduced by computer simulations.More recently, however, PSIPRED has been given a wider range of features to cover other important problems in biology. For example, using PSIPRED, a scientist can predict which proteins do not fold into stable shapes (called disordered proteins) or which chemical substances are likely to bind to a protein. Even where a protein does not appear to fold into a single stable structure, PSIPRED can still help scientists deduce what the function of his or her protein is likely to be. Generating such information on a large scale using computer algorithms can help expand our knowledge base of the biological role of proteins at a cellular level, and such understanding will be a key stepping stone in the development of techniques and pharmaceuticals to target diseased genes and their products as well as proteins from pathological organisms such as bacteria or viruses. In a similar way, knowledge on the function of certain bacterial genes can, for example, help develop new industrial processes by modifying the genes to make them produce novel chemical compounds, or even helping to detoxify industrial waste by producing friendly bacteria that can use the poisonous chemicals as food.
随着完全测序的基因组数量不断增加,生命科学家现在面临着表征编码蛋白质的生物学作用的挑战,以增进我们对细胞生理学的理解。大多数基因被设计为编码在生物体中具有有用功能的蛋白质。蛋白质本质上是一串更简单的分子,称为氨基酸,一旦细胞中的蛋白质制造机器(核糖体)形成蛋白质,这些分子串就可以自组装成复杂的 3D 结构。正是这种独特的结构决定了蛋白质的精确化学功能(即在细胞中做什么以及如何做)。通过向结晶蛋白质发射 X 射线,科学家可以确定它们的结构,但这个过程可能需要数月甚至数年的时间。由于有数十万种蛋白质的天然结构未知,因此科学家们希望找到一种巧妙的捷径来确定蛋白质的结构也就不足为奇了。像许多其他科学家一样,我们一直在尝试“破解蛋白质结构的密码”,即制定出控制蛋白质如何发现其独特结构的规则,然后尝试使用这些规则对计算机进行编程,以使科学家能够快速“预测” PSIPRED Workbench 是伦敦大学学院 (UCL) 维护的 Web 服务器集合,它的作用就是做到这一点,即它允许生物学家仅根据氨基酸序列来预测其蛋白质结构。多年来,它通过提供这些服务帮助了成千上万的科学家开展工作,我们现在不仅希望升级和维护这些现有服务器,还希望实施新的方法,即使是最困难的蛋白质的结构也可以通过以下方法推导出来:然而,最近,PSIPRED 被赋予了更广泛的功能,以涵盖生物学中的其他重要问题。例如,使用 PSIPRED,科学家可以预测哪些蛋白质不会折叠成稳定的形状(称为无序蛋白质)或哪些化学物质可能与蛋白质结合。即使蛋白质似乎没有折叠成单一稳定结构,PSIPRED 仍然可以帮助科学家推断其蛋白质可能的功能。使用计算机算法大规模生成此类信息可以帮助扩展我们在细胞水平上蛋白质生物学作用的知识库,这种理解将成为开发针对患病基因及其产物的技术和药物的关键垫脚石以及来自细菌或病毒等病原生物的蛋白质。以类似的方式,有关某些细菌基因功能的知识可以通过修改基因以使其产生新的化合物来帮助开发新的工业流程,甚至通过产生可以利用这些细菌的友好细菌来帮助对工业废物进行解毒。有毒化学品如食物。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Large-scale clustering of AlphaFold2 3D models shines light on the structure and function of proteins
AlphaFold2 3D 模型的大规模聚类揭示了蛋白质的结构和功能
- DOI:http://dx.10.1016/j.molcel.2023.10.039
- 发表时间:2023
- 期刊:
- 影响因子:16
- 作者:Bordin N
- 通讯作者:Bordin N
Machine learning methods for predicting protein structure from single sequences.
用于从单个序列预测蛋白质结构的机器学习方法。
- DOI:http://dx.10.1016/j.sbi.2023.102627
- 发表时间:2023
- 期刊:
- 影响因子:6.8
- 作者:Kandathil SM
- 通讯作者:Kandathil SM
Merizo: a rapid and accurate domain segmentation method using invariant point attention
Merizo:一种使用不变点注意力的快速准确的域分割方法
- DOI:http://dx.10.1101/2023.02.19.529114
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Lau A
- 通讯作者:Lau A
Merizo: a rapid and accurate protein domain segmentation method using invariant point attention.
Merizo:一种使用不变点注意力的快速准确的蛋白质域分割方法。
- DOI:http://dx.10.1038/s41467-023-43934-4
- 发表时间:2023
- 期刊:
- 影响因子:16.6
- 作者:Lau AM
- 通讯作者:Lau AM
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Jones其他文献
THE CHANDRA PLANETARY NEBULA SURVEY (ChanPlaNS). III. X-RAY EMISSION FROM THE CENTRAL STARS OF PLANETARY NEBULAE
钱德拉行星状星云调查(ChanPlanS)。
- DOI:
10.1088/0004-637x/800/1/8 - 发表时间:
2014-12-08 - 期刊:
- 影响因子:0
- 作者:
R. Montez;J. Kastner;B. Balick;E. Behar;E. Blackman;V. Bujarrabal;You;R. Corradi;O. D. Marco;Annika Frank;M. Freeman;D. Frew;M. Guerrero;David Jones;J. López;B. Miszalski;J. Nordhaus;Q. Parker;Quentin A. Parker;R. Sahai;C. S;in;in;D. Schönberner;N. Soker;J. Sokoloski;M. Steffen;J. A. Toal'a;T. Ueta;E. Villaver;A. Zijlstra - 通讯作者:
A. Zijlstra
Using a Camera to Capture and Correct Spatial Photometric Variation in Multi-Projector Displays
使用相机捕获并校正多投影仪显示器中的空间光度变化
- DOI:
10.1007/3-540-45706-2_99 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
A. Majumder;David Jones;M. McCrory;M. Papka;R. Stevens - 通讯作者:
R. Stevens
Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run
搜索来自未知孤立源和 Scorpius X-1 的周期性引力波:第二次 LIGO 科学运行的结果
- DOI:
10.1103/physrevd.76.082001 - 发表时间:
2006-04-25 - 期刊:
- 影响因子:5
- 作者:
B. Abbott;R. Abbott;R. Adhikari;J. Agresti;P. Ajith;B. Allen;R. Amin;S. Anderson;W. Anderson;M. Arain;M. Araya;H. Arm;ula;ula;M. Ashley;S. Aston;P. Aufmuth;C. Aulbert;S. Babak;S. Ballmer;H. Bantilan;B. Barish;C. Barker;D. Barker;B. Barr;P. Barriga;M. Barton;K. Bayer;K. Belczynski;S. Berukoff;J. Betzwieser;P. Beyersdorf;B. Bhawal;I. Bilenko;G. Billingsley;R. Biswas;E. Black;K. Blackburn;L. Blackburn;B. Blair;B. Bl;J. Bogenstahl;L. Bogue;R. Bork;V. Boschi;S. Bose;P. Brady;V. Braginsky;J. Brau;M. Brinkmann;A. Brooks;Duncan A. Brown;A. Bullington;A. Bunkowski;A. Buonanno;O. Burmeister;D. Busby;W. Butler;R. Byer;L. Cadonati;G. Cagnoli;J. Camp;J. Cannizzo;K. Cannon;C. Cantley;Junwei Cao;L. Cárdenas;K. Carter;M. M. Casey;G. Castaldi;C. Cepeda;E. Chalkey;P. Charlton;S. Chatterji;S. Chelkowski;Yi Chen;F. Chiadini;David Chin;E. Chin;J. Chow;N. Christensen;J. Clark;P. Cochrane;T. Cokelaer;C. Colacino;R. Coldwell;M. Coles;R. Conte;D. Cook;T. Corbitt;D. Coward;D. Coyne;J. Creighton;T. Creighton;R. Croce;D. Crooks;A. Cruise;P. Csatorday;A. Cumming;C. Cutler;J. Dalrymple;E. D'ambrosio;K. Danzmann;G. Davies;E. Daw;D. DeBra;J. Degallaix;M. Degree;T. Delker;T. Demma;V. Dergachev;S. Desai;R. DeSalvo;S. Dhur;har;har;M. Díaz;J. Dickson;A. Credico;G. Diederichs;A. Dietz;H. Ding;E. Doomes;R. Drever;J. Dumas;R. Dupuis;J. Dwyer;P. Ehrens;E. Espinoza;T. Etzel;M. Evans;T. Evans;S. Fairhurst;Yaohui Fan;D. Fazi;M. Fejer;L. Finn;V. Fiumara;N. Fotopoulos;A. Franzen;K. Y. Franzén;A. Freise;R. Frey;T. Fricke;P. Fritschel;V. Frolov;M. Fyffe;V. Galdi;K. Ganezer;J. Garofoli;I. Gholami;J. Giaime;S. Giampanis;K. Giardina;K. Goda;E. Goetz;L. Goggin;G. González;S. Gossler;A. Grant;S. Gras;C. Gray;M. Gray;J. Greenhalgh;A. Gretarsson;R. Grosso;H. Grote;S. Grunewald;M. Guenther;R. Gustafson;B. Hage;D. Hammer;C. Hanna;J. Hanson;J. Harms;G. Harry;E. Harstad;T. Hayler;J. Heefner;G. Heinzel;I. Heng;A. Heptonstall;M. Heurs;M. Hewitson;S. Hild;E. Hirose;D. Hoak;D. Hosken;J. Hough;E. Howell;D. Hoyl;S. Huttner;D. Ingram;E. Innerhofer;M. Ito;Y. Itoh;A. Ivanov;D. Jackrel;O. Jennrich;B. Johnson;W. Johnson;W. Johnston;David Jones;G. Jones;Russell Jones;L. Ju;P. Kalmus;V. Kalogera;D. Kasprzyk;E. Katsavounidis;K. Kawabe;S. Kawamura;F. Kawazoe;W. Kells;D. Keppel;F. Khalili;C. Killow;Chunglee Kim;P. King;J. Kissell;S. Klimenko;K. Kokeyama;V. Kondrashov;R. Kopparapu;D. Kozak;B. Krishnan;P. Kwee;P. Lam;M. L;ry;ry;B. Lantz;A. Lazzarini;B. Lee;M. Lei;J. Leiner;V. Leonhardt;I. Leonor;K. Libbrecht;A. Libson;P. Lindquist;N. Lockerbie;J. Logan;M. Longo;M. Lorm;M. Lubinski;H. Lück;B. Machenschalk;M. Macinnis;M. Mageswaran;K. Mail;M. Malec;V. M;ic;ic;S. Maranò;S. Márka;J. Markowitz;E. Maros;I. Martin;J. Marx;K. Mason;L. Matone;V. Matta;N. Mavalvala;R. McCarthy;D. McClell;S. Mcguire;M. McHugh;K. McKenzie;J. Mcnabb;S. McWilliams;T. Meier;A. Melissinos;G. Mendell;R. Mercer;S. Meshkov;E. Messaritaki;C. Messenger;D. Meyers;E. Mikhailov;S. Mitra;V. Mitrofanov;G. Mitselmakher;R. Mittleman;O. Miyakawa;S. Mohanty;G. Moreno;K. Mossavi;C. Mow;A. Moylan;D. Mudge;G. Mueller;S. Mukherjee;H. Müller;J. Munch;P. Murray;E. Myers;J. Myers;S. Nagano;T. Nash;G. Newton;A. Nishizawa;F. Nocera;K. Numata;P. Nutzman;B. O'reilly;R. O’Shaughnessy;D. Ottaway;H. Overmier;B. Owen;Yi Pan;M. Papa;V. Parameshwaraiah;C. Parameswariah;P. Patel;M. Pedraza;S. Penn;V. Pierro;I. Pinto;M. Pitkin;H. Pletsch;M. Plissi;F. Postiglione;R. Prix;V. Quetschke;F. Raab;D. Rabeling;H. Radkins;R. Rahkola;N. Rainer;M. Rakhmanov;M. Ramsunder;K. Rawlins;S. Ray;V. Re;T. Regimbau;H. Rehbein;S. Reid;D. Reitze;L. Ribichini;S. Richman;R. Riesen;K. Riles;B. Rivera;N. Robertson;C. Robinson;E. Robison;S. Roddy;Á. Rodriguez;A. Rogan;J. Rollins;J. Romano;J. Romie;H. Rong;R. Route;S. Rowan;A. Rüdiger;L. Ruet;P. Russell;K. Ryan;S. Sakata;M. Samidi;L. D. L. Jordana;V. S;berg;berg;G. S;ers;ers;V. Sannibale;S. Saraf;P. Sarin;B. Sathyaprakash;S. Sato;P. Saulson;R. Savage;P. Savov;A. Sazonov;S. Schediwy;R. Schilling;R. Schnabel;R. Schofield;B. Schutz;P. Schwinberg;S. Scott;A. Searle;B. Sears;F. Seifert;D. Sellers;A. Sengupta;P. Shawhan;D. Shoemaker;A. Sibley;J. Sidles;X. Siemens;D. Sigg;S. Sinha;A. Sintes;B. Slagmolen;J. Slutsky;J. R. Smith;M. Smith;K. Somiya;K. Strain;N. E. Str;D. Strom;A. Stuver;T. Summerscales;K. Sun;M. Sung;P. Sutton;J. Sylvestre;H. Takahashi;A. Takamori;D. Tanner;M. Tarallo;Robert J. Taylor;J. Thacker;K. Thorne;K. Thorne;A. Thüring;M. Tinto;K. Tokmakov;C. Torres;C. Torrie;G. Traylor;M. Trias;W. Tyler;D. Ugolini;C. Ungarelli;K. Urbanek;H. Vahlbruch;M. Vallisneri;C. Broeck;M. Putten;M. Varvella;S. Vass;A. Vecchio;J. Veitch;P. Veitch;A. Villar;C. Vorvick;S. Vyachanin;S. Waldman;L. Wallace;H. Ward;R. Ward;K. Watts;D. Webber;A. Weidner;M. Weinert;A. Weinstein;R. Weiss;L. Wen;S. Wen;K. Wette;J. Whelan;D. M. Whitbeck;S. Whitcomb;B. Whiting;S. Wiley;C. Wilkinson;P. Willems;L. Williams;B. Willke;I. Wilmut;W. Winkler;C. Wipf;S. Wise;A. Wiseman;G. Woan;D. Woods;R. Wooley;J. Worden;W. Wu;I. Yakushin;H. Yamamoto;Zewu Yan;S. Yoshida;N. Yunes;K. Zaleski;M. Zanolin;J. Zhang;L. Zhang;Chunnong Zhao;N. Zotov;M. Zucker;H. Z. Mühlen;J. Zweizig - 通讯作者:
J. Zweizig
Design Considerations for Haptic and Auditory Map Interfaces
触觉和听觉地图界面的设计注意事项
- DOI:
10.1559/152304005775194656 - 发表时间:
2005-01-01 - 期刊:
- 影响因子:2.5
- 作者:
Matthew T. Rice;R. Jacobson;R. Golledge;David Jones - 通讯作者:
David Jones
Somatic mutation landscapes at single-molecule resolution
单分子分辨率的体细胞突变景观
- DOI:
10.1038/s41586-021-03477-4 - 发表时间:
2021-04-28 - 期刊:
- 影响因子:64.8
- 作者:
F. Abascal;Luke M. R. Harvey;E. Mitchell;A. Lawson;Stefanie V. Lensing;Peter Ellis;Andrew J. C. Russell;R. Alcantara;Adrian Baez;Yichen Wang;Eugene Kwa;H. Lee;A. Cagan;Tim H. H. Coorens;M. Chapman;S. Olafsson;Steven Leonard;David Jones;Heather E. Machado;M. Davies;N. Øbro;Krishnaa T Mahubani;Kieren Allinson;M. Gerstung;K. Saeb‐Parsy;D. Kent;E. Laurenti;M. Stratton;R. Rahbari;P. Campbell;Robert J. Osborne;I. Martincorena - 通讯作者:
I. Martincorena
David Jones的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Jones', 18)}}的其他基金
Open Access Block Award 2024 - The Francis Crick Institute
2024 年开放获取区块奖 - 弗朗西斯·克里克研究所
- 批准号:
EP/Z531844/1 - 财政年份:2024
- 资助金额:
$ 77.79万 - 项目类别:
Research Grant
Open Access Block Award 2023 - The Francis Crick Institute
2023 年开放获取区块奖 - 弗朗西斯·克里克研究所
- 批准号:
EP/Y530360/1 - 财政年份:2023
- 资助金额:
$ 77.79万 - 项目类别:
Research Grant
Open Access Block Award 2022 - The Francis Crick Institute
2022 年开放获取区块奖 - 弗朗西斯·克里克研究所
- 批准号:
EP/X526381/1 - 财政年份:2022
- 资助金额:
$ 77.79万 - 项目类别:
Research Grant
Exploiting Differentiable Programming Models For Protein Structure Prediction And Modelling
利用可微分编程模型进行蛋白质结构预测和建模
- 批准号:
BB/W008556/1 - 财政年份:2022
- 资助金额:
$ 77.79万 - 项目类别:
Research Grant
Statewide effort to diversify undergraduate engineering student population.
全州范围内努力使本科工程学生群体多样化。
- 批准号:
1848696 - 财政年份:2018
- 资助金额:
$ 77.79万 - 项目类别:
Standard Grant
Cross Disciplinary Thinking about 'Antisocial Personality Disorder'.
关于“反社会人格障碍”的跨学科思考。
- 批准号:
ES/L000911/2 - 财政年份:2017
- 资助金额:
$ 77.79万 - 项目类别:
Research Grant
ANAMMARKS: ANaerobic AMmonium oxidiation bioMARKers in paleoenvironmentS
ANAMMARKS:古环境中的厌氧铵氧化生物标志物
- 批准号:
NE/N011112/1 - 财政年份:2016
- 资助金额:
$ 77.79万 - 项目类别:
Research Grant
Newcastle University Confidence in Concept 2014
纽卡斯尔大学 2014 年理念信心
- 批准号:
MC_PC_14101 - 财政年份:2015
- 资助金额:
$ 77.79万 - 项目类别:
Intramural
Expansion and Further Development of the PSIPRED Protein Structure and Function Bioinformatics Workbench
PSIPRED 蛋白质结构和功能生物信息学工作台的扩展和进一步发展
- 批准号:
BB/M011712/1 - 财政年份:2015
- 资助金额:
$ 77.79万 - 项目类别:
Research Grant
UoNewcastle Confidence in Concept 2013
UoNewcastle 对 2013 年概念的信心
- 批准号:
MC_PC_13071 - 财政年份:2014
- 资助金额:
$ 77.79万 - 项目类别:
Intramural
相似国自然基金
靶向VEGFR2增强放疗-免疫检查点抑制剂联合介导的远隔效应抑制肿瘤进展的机制研究
- 批准号:82360580
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
腺相关病毒载体介导的circ_12952基因治疗通过激活结直肠癌抗肿瘤免疫增强PD-1抗体疗效的机制研究及临床探索
- 批准号:82303073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多层级增强B4C/6082Al复合材料背压往复挤压-短时时效界面行为及服役性能提升机理研究
- 批准号:52375329
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
双尺度TiB增强TC4基复合材料组织设计与强塑性协同机理
- 批准号:52301189
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于超声谐波阵列增强的惯性摩擦焊弱结合缺陷检测方法
- 批准号:52375328
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
CAREER: Enhancing Hurricane Resistance of Building Exteriors (Envelopes) under Urban Development in a Changing Climate
职业:在气候变化的城市发展中增强建筑外墙(围护结构)的抗飓风能力
- 批准号:
2340214 - 财政年份:2024
- 资助金额:
$ 77.79万 - 项目类别:
Standard Grant
CAREER: Enhancing Diversity and Personalization in Human-AI Collaborative Writing
职业:增强人机协作写作的多样性和个性化
- 批准号:
2340345 - 财政年份:2024
- 资助金额:
$ 77.79万 - 项目类别:
Continuing Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
- 批准号:
2341858 - 财政年份:2024
- 资助金额:
$ 77.79万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411294 - 财政年份:2024
- 资助金额:
$ 77.79万 - 项目类别:
Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
- 批准号:
2411298 - 财政年份:2024
- 资助金额:
$ 77.79万 - 项目类别:
Standard Grant