How the ESCRT-III-like protein Vipp1 assembles polymeric super-structures to mitigate membrane stress
ESCRT-III 样蛋白 Vipp1 如何组装聚合超结构以减轻膜应力
基本信息
- 批准号:BB/W008181/1
- 负责人:
- 金额:$ 89.01万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In all living systems, membranes are used to separate the inside of the cell from the outside environment. Membranes are also used to shape cells internally so that different areas can form specialist compartments with distinct roles. In cells, membranes are dynamic requiring continual remodelling for many processes including cell division for growth or membrane trafficking for the movement of cargo. In order to remodel the membrane, cells have evolved specialist protein families to undertake this physical work.One of the most important membrane remodelling families are ESCRT-III proteins. They are universal in eukaryotes (cells like our own). ESCRT-III proteins are so ancient that they have ancestors in some archaea from which eukaryotes later evolved. Recently, in an exciting discovery, we showed that ESCRT-III proteins also exist in bacteria (PspA) and in cyanobacteria (Vipp1). This is important as it showed that an ESCRT-III-like protein was present in the last universal common ancestor of all cells (LUCA) and that all evolutionary domains including bacteria, archaea and eukaryotes have depended on ESCRT-III-like proteins to shape membrane since the earliest attempts at life.ESCRT-III-like proteins undertake many essential functions. In humans, they are essential for the final separation of dividing cells and membrane repair. They are also implicated in many diseases including viral invasion, bacterial infection, cancer and neurodegeneration such as dementia and Huntington's disease. Due to its role in membrane protection, PspA is a driver of anti-microbial resistance (AMR) and bacterial pathogenesis.In this proposal we study Vipp1, which is found in all cyanobacteria, algae and plants. We know that Vipp1 is important as gene knockout is usually lethal. This is due to abnormal formation of the thylakoid membranes where photosynthesis is undertaken. What we still do not know is what Vipp1 does in the cell and what its membrane remodelling duties are. Currently, we think that Vipp1 proteins assemble together to build superstructures that include rings, helical filaments and flat scaffolds that somehow shape and support membrane possibly in regions of high stress where the integrity of the membrane is physically or chemically threatened. The overall goal of this proposal is to understand the mechanism for how Vipp1 builds these superstructures and uses them to do mechanical work on the membrane. Vipp1 also represents a tractable system which can show us the universal mechanistic principles underlying how PspA and more complicated ESCRT-III systems work and cause disease. Finally, Vipp1 modification in engineered cyanobacteria facilitates high yields of fatty acids for both nutritional and anti-inflammatory use. In future biotechnological application, similar Vipp1 modification may facilitate the production of other useful molecules such as biofuels in cyanobacteria.Aims:1) to understand how Vipp1 builds and switches between different superstructures so as to shape, stabilise and repair membrane. Specifically, a powerful form of electron microscopy will allow us to visualize the precise position of the Vipp1 atoms within helical filaments so we can learn about their 3D structure and chemistry. 2D planar filament architecture when attached to membrane will be deduced at lower resolution. Understanding how Vipp1 builds different structural forms lies at the heart of its membrane remodelling capabilities.2) to explore how Vipp1 superstructures have the ability to sculpt membrane in a simplified 'in vitro' environment. By mixing Vipp1 with both membrane and Vipp1 binding proteins (VBPs), we aim to reconstitute any membrane cutting, joining or stabilising events that may represent what Vipp1 does in the cell.3) to find other proteins in the cell that attach to Vipp1 and changes how it functions. Such VBPs may shift the way Vipp1 builds or disassembles superstructures and how it remodels membrane.
在所有生命系统中,膜用于将细胞内部与外部环境分开。膜还用于塑造细胞内部形状,以便不同区域可以形成具有不同作用的专门隔室。在细胞中,膜是动态的,需要不断重塑许多过程,包括用于生长的细胞分裂或用于货物移动的膜运输。为了重塑膜,细胞进化出了专门的蛋白质家族来承担这项物理工作。最重要的膜重塑家族之一是 ESCRT-III 蛋白。它们在真核生物(像我们自己的细胞)中是普遍存在的。 ESCRT-III 蛋白非常古老,它们的祖先来自一些古细菌,后来真核生物就是从这些古细菌进化而来的。最近,我们有一个令人兴奋的发现,表明 ESCRT-III 蛋白也存在于细菌 (PspA) 和蓝细菌 (Vipp1) 中。这很重要,因为它表明 ESCRT-III 样蛋白存在于所有细胞的最后一个通用共同祖先 (LUCA) 中,并且包括细菌、古细菌和真核生物在内的所有进化域都依赖于 ESCRT-III 样蛋白来塑造自生命最早的尝试以来,细胞膜就已存在。ESCRT-III 样蛋白承担着许多重要的功能。在人类中,它们对于分裂细胞的最终分离和膜修复至关重要。它们还与许多疾病有关,包括病毒入侵、细菌感染、癌症和神经退行性疾病,如痴呆和亨廷顿舞蹈症。由于其膜保护作用,PspA 是抗微生物耐药性 (AMR) 和细菌发病机制的驱动因素。在本提案中,我们研究了 Vipp1,它存在于所有蓝藻、藻类和植物中。我们知道 Vipp1 很重要,因为基因敲除通常是致命的。这是由于进行光合作用的类囊体膜形成异常所致。我们仍然不知道 Vipp1 在细胞中的作用以及它的膜重塑职责是什么。目前,我们认为 Vipp1 蛋白组装在一起构建上层结构,包括环、螺旋丝和扁平支架,这些结构可能在膜完整性受到物理或化学威胁的高应力区域以某种方式塑造和支撑膜。该提案的总体目标是了解 Vipp1 如何构建这些上层结构并使用它们对膜进行机械工作的机制。 Vipp1 还代表了一个易于处理的系统,它可以向我们展示 PspA 和更复杂的 ESCRT-III 系统如何工作并导致疾病的普遍机制原理。最后,工程蓝藻中的 Vipp1 修饰有助于提高脂肪酸的产量,用于营养和抗炎用途。在未来的生物技术应用中,类似的Vipp1修饰可能有助于蓝藻中其他有用分子的生产,例如生物燃料。目的:1)了解Vipp1如何在不同的上层结构之间构建和切换,从而塑造、稳定和修复膜。具体来说,强大的电子显微镜将使我们能够可视化 Vipp1 原子在螺旋丝内的精确位置,这样我们就可以了解它们的 3D 结构和化学性质。附着在膜上时的二维平面丝结构将以较低的分辨率推导出来。了解 Vipp1 如何构建不同的结构形式是其膜重塑能力的核心。2) 探索 Vipp1 上层结构如何能够在简化的“体外”环境中塑造膜。通过将 Vipp1 与膜和 Vipp1 结合蛋白 (VBP) 混合,我们的目标是重建任何可能代表 Vipp1 在细胞中作用的膜切割、连接或稳定事件。 3) 寻找细胞中与 Vipp1 相连的其他蛋白质,改变它的运作方式。此类 VBP 可能会改变 Vipp1 构建或拆卸上层结构以及重塑膜的方式。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Mechanism for Vipp1 spiral formation, ring biogenesis and membrane repair
- DOI:10.1101/2023.09.26.559607
- 发表时间:2023-09
- 期刊:
- 影响因子:0
- 作者:Souvik Naskar;Andrea Merino;Javier Espadas;Jayanti Singh;Aurélien Roux;A. Colom;Harry H Low
- 通讯作者:Souvik Naskar;Andrea Merino;Javier Espadas;Jayanti Singh;Aurélien Roux;A. Colom;Harry H Low
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Harry Low其他文献
Harry Low的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Pro-IL-1β与膜变形复合物ESCRT-III相互作用调节细胞膜生物力学特性促进鼻咽癌转移的机制研究
- 批准号:82281360580
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
RAB8A-ESCRT-III通路介导的自噬依赖性铁死亡在胰腺癌中的作用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ROS调控ESCRT-III抑制caspase/gasdermin D介导的中性粒细胞焦亡在银屑病中的作用及机制研究
- 批准号:82073439
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
冷冻电子显微学研究ESCRT-III剪切膜的分子机制
- 批准号:31870743
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
α2肾上腺素受体活化促ESCRT-III膜聚集在肾CI/RI致肺程序性坏死中的机制研究
- 批准号:81801900
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
相似海外基金
NEPhos_Phosphoregulation of ESCRT-III during nuclear envelope reformation
NEPhos_ESCRT-III 核膜重构过程中的磷酸调节
- 批准号:
EP/Z00098X/1 - 财政年份:2025
- 资助金额:
$ 89.01万 - 项目类别:
Fellowship
Mechanisms of impaired ESCRT-III nuclear surveillance in ALS/FTD
ALS/FTD 中 ESCRT-III 核监测受损的机制
- 批准号:
10705390 - 财政年份:2023
- 资助金额:
$ 89.01万 - 项目类别:
Role of VPS4A and ESCRT-III in terminal erythropoiesis
VPS4A 和 ESCRT-III 在终末红细胞生成中的作用
- 批准号:
10685320 - 财政年份:2022
- 资助金额:
$ 89.01万 - 项目类别:
Role of VPS4A and ESCRT-III in terminal erythropoiesis
VPS4A 和 ESCRT-III 在终末红细胞生成中的作用
- 批准号:
10523545 - 财政年份:2022
- 资助金额:
$ 89.01万 - 项目类别:
卵割期におけるESCRT複合体の機能解明を目指した遺伝子改変マウスの解析
对转基因小鼠进行分析,旨在阐明 ESCRT 复合物在卵裂阶段的功能
- 批准号:
21K05890 - 财政年份:2021
- 资助金额:
$ 89.01万 - 项目类别:
Grant-in-Aid for Scientific Research (C)