Systems-Mechanobiology of Endothelial Gap Dynamics
内皮间隙动力学的系统力学生物学
基本信息
- 批准号:BB/V002708/1
- 负责人:
- 金额:$ 48.69万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The vasculature is a complex system, critical to the functioning of higher-level organisms. It is composed of large vessels that branch into smaller and smaller vessels. On the smallest scale, the microvasculature consists of arterioles, venules and capillaries. Here, oxygen and nutrients are exchanged between the vessels and the tissue. Also, immune or cancer cells can transmigrate through gaps within the blood vessels into the surrounding tissues. For the immune system, this is a critical function, as immune cells need to reach sites of infection. However, high levels of transmigration may also contribute to chronic inflammation, and cancer cells transmigrate the blood vessels during metastasis. Therefore, a tight regulation of the blood vessel gaps is critical during homeostasis, and de-regulation of gaps may contribute to diseases.Our preliminary mathematical modelling/in vitro experimental work revealed that a balance of intracellular forces in the endothelial cells, the cells that line the blood vessels, regulates the formation of gaps in between the cells. We found that these gaps occur most frequently at the vertex points between three endothelial cells, and may appear autonomously, in absence of transmigrating cells. This finding complemented earlier studies that uncovered a critical role of inflammatory signals, released by transmigrating cells, in the regulation of endothelial cells. We further showed that transmigrating cells may exploit these autonomously forming gaps by migrating towards the gaps, where they cross the endothelium. Therefore, studying the dynamic nature of the endothelium, and the resulting formation of gaps, is critical to understand the physiologically important processes of immune and cancer transmigration.In vivo, the dynamics of the microvasculature is influenced by several further biophysical properties not present in most in vitro assays. Notably, blood flow in the vessels, interactions of endothelial cells with the surrounding extracellular matrix, and the complex geometry and topology of the microvasculature, have all been found to influence endothelial dynamics individually. In vivo these properties exist simultaneously. Systems biology models are typically employed to study cellular decision making in response to multiple stimuli. However, current systems biology models are focused on the study of multiple molecular stimuli, e.g. inflammatory cytokines, but cannot capture biophysical stimuli. Therefore, there is an urgent need to incorporate the effect of multiple biophysical stimuli into systems biology models.In this project, we are developing an integrative modelling/experimental approach that incorporates multiple physiological biophysical properties into both mathematical models and in vitro assays. Our approach will advance models and experiments iteratively together to gain unprecedented insights into the dynamic nature of the endothelial microvasculature. The outcome will be a versatile mathematical modelling platform to study the dynamics of the microvasculature in homeostasis, and will underpin future work on the contribution of endothelial dynamics to diseases. Moreover, we will advance our recently developed engineered in vitro assays that can generate stable, perfused 3D microvasculature in complex extracellular matrices, and that is therefore ideally suited to validate our mathematical modelling predictions. The combined modelling/experimental system will be used to test several specific biological hypotheses on the complex role of major contributors to endothelial dynamics and gap formation.
脉管系统是一个复杂的系统,对于高级生物体的功能至关重要。它由大血管组成,大血管又分支成越来越小的血管。在最小的尺度上,微脉管系统由小动脉、小静脉和毛细血管组成。在这里,氧气和营养物质在血管和组织之间交换。此外,免疫细胞或癌细胞可以通过血管内的间隙迁移到周围组织。对于免疫系统来说,这是一项关键功能,因为免疫细胞需要到达感染部位。然而,高水平的迁移也可能导致慢性炎症,并且癌细胞在转移过程中迁移血管。因此,血管间隙的严格调节在体内平衡过程中至关重要,而间隙的失调可能会导致疾病。我们的初步数学模型/体外实验工作表明,内皮细胞中细胞内力的平衡,使细胞排列血管,调节细胞之间间隙的形成。我们发现这些间隙最常出现在三个内皮细胞之间的顶点处,并且在没有迁移细胞的情况下可能会自主出现。这一发现补充了早期的研究,这些研究揭示了迁移细胞释放的炎症信号在内皮细胞调节中的关键作用。我们进一步表明,迁移细胞可以通过向间隙迁移来利用这些自主形成的间隙,在那里它们穿过内皮。因此,研究内皮的动态性质以及由此产生的间隙形成,对于理解免疫和癌症迁移的重要生理过程至关重要。在体内,微脉管系统的动态受到大多数生物体中不存在的几种进一步的生物物理特性的影响。体外测定。值得注意的是,血管中的血流、内皮细胞与周围细胞外基质的相互作用以及微脉管系统的复杂几何形状和拓扑结构,都被发现单独影响内皮动力学。在体内这些特性同时存在。系统生物学模型通常用于研究细胞对多种刺激的反应决策。然而,当前的系统生物学模型侧重于多种分子刺激的研究,例如。炎症细胞因子,但不能捕获生物物理刺激。因此,迫切需要将多种生物物理刺激的影响纳入系统生物学模型。在这个项目中,我们正在开发一种综合建模/实验方法,将多种生理生物物理特性纳入数学模型和体外测定中。我们的方法将迭代地推进模型和实验,以获得对内皮微血管系统动态性质的前所未有的见解。其成果将是一个多功能的数学模型平台,用于研究稳态中微脉管系统的动力学,并将支持未来关于内皮动力学对疾病的贡献的研究。此外,我们将推进我们最近开发的工程体外测定,这些测定可以在复杂的细胞外基质中生成稳定的、灌注的 3D 微脉管系统,因此非常适合验证我们的数学模型预测。组合的建模/实验系统将用于测试关于内皮动力学和间隙形成的主要贡献者的复杂作用的几种特定生物学假设。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Feedback between mechanosensitive signaling and active forces governs endothelial junction integrity.
- DOI:10.1038/s41467-022-34701-y
- 发表时间:2022-11-19
- 期刊:
- 影响因子:16.6
- 作者:McEvoy, Eoin;Sneh, Tal;Moeendarbary, Emad;Javanmardi, Yousef;Efimova, Nadia;Yang, Changsong;Marino-Bravante, Gloria E.;Chen, Xingyu;Escribano, Jorge;Spill, Fabian;Manuel Garcia-Aznar, Jose;Weeraratna, Ashani T.;Svitkina, Tatyana M.;Kamm, Roger D.;Shenoy, Vivek B.
- 通讯作者:Shenoy, Vivek B.
Editorial: Mechanobiology and the microenvironment: Computational and experimental approaches.
- DOI:10.3389/fcell.2022.1054135
- 发表时间:2022
- 期刊:
- 影响因子:5.5
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Fabian Spill其他文献
Optimisation of simulations of stochastic processes by removal of opposing reactions.
通过消除相反反应来优化随机过程的模拟。
- DOI:
10.1063/1.4942413 - 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Fabian Spill;P. Maini;Helen M. Byrne - 通讯作者:
Helen M. Byrne
Fabian Spill的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Fabian Spill', 18)}}的其他基金
Systems-Mechanobiology of Health and Disease
健康与疾病的系统力学生物学
- 批准号:
MR/T043571/1 - 财政年份:2021
- 资助金额:
$ 48.69万 - 项目类别:
Fellowship
相似国自然基金
血管内皮细胞泡沫化在动脉粥样硬化中的作用及其力学生物学机制
- 批准号:12272246
- 批准年份:2022
- 资助金额:56 万元
- 项目类别:面上项目
低振荡切应力调控血管内皮细胞清道夫受体-B1促进动脉粥样硬化的力学生物学机制研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
血管内皮细胞吞噬促动脉粥样硬化发生的细胞力学生物学机制研究
- 批准号:
- 批准年份:2020
- 资助金额:310 万元
- 项目类别:重点项目
血管内皮糖萼抑制低密度脂蛋白在血管壁沉积的作用及其力学生物学机制
- 批准号:31870940
- 批准年份:2018
- 资助金额:63.0 万元
- 项目类别:面上项目
低剪切应力促As新机制:DNA羟甲基酶TET2-/-引发血管内皮细胞焦亡
- 批准号:31870937
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
相似海外基金
Matrix biophysics and pericyte mechanobiology in (patho)physiological angiogenesis
(病理)生理性血管生成中的基质生物物理学和周细胞力学生物学
- 批准号:
10680994 - 财政年份:2023
- 资助金额:
$ 48.69万 - 项目类别:
Mechanobiology of Endothelial-to-Mesenchymal Transition in Cardiovascular Calcification
心血管钙化中内皮向间质转化的力学生物学
- 批准号:
10631013 - 财政年份:2022
- 资助金额:
$ 48.69万 - 项目类别:
Control of endothelial cell mechanics and blood vessels remodeling by blood flow
通过血流控制内皮细胞力学和血管重塑
- 批准号:
22H02624 - 财政年份:2022
- 资助金额:
$ 48.69万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mechanobiology of the Endothelial Cell Glyxcocalyx
内皮细胞糖萼的力学生物学
- 批准号:
RGPIN-2018-06161 - 财政年份:2022
- 资助金额:
$ 48.69万 - 项目类别:
Discovery Grants Program - Individual
Mechanobiology of the Endothelial Cell Glyxcocalyx
内皮细胞糖萼的力学生物学
- 批准号:
RGPIN-2018-06161 - 财政年份:2021
- 资助金额:
$ 48.69万 - 项目类别:
Discovery Grants Program - Individual