Deep-brain fluorescence imaging

深部脑荧光成像

基本信息

  • 批准号:
    BB/P02730X/1
  • 负责人:
  • 金额:
    $ 19.22万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Much of what we know about the brain, we know because we can image it using a microscope. We can look at the tiny features inside each neuron to see how it is built, or look at the electrical activity by using dyes which glow whenever parts of the brain are working. Unfortunately, this means that we know much more about the surface of the brain than we do about the parts buried deep within, just because we can't squeeze a large microscope into such a small space. To truly understand the brain, we must find a way to image the buried parts too.Putting a microscope inside the brain is hard, because lenses are big. Previously, people have tried to image using tiny microscopes, but while it is possible to get an image quite quickly using these microscopes, they are bulky and do considerable damage to the brain as they are inserted. An optical fiber can get the same image, but with a much smaller diameter, which means less damage. Understandably, if we cause too much damage, we can no longer be certain that what we observe in the brain reflects how it acts in its natural state; a situation which is largely the current state of high-resolution deep brain imaging today.Unfortunately, the light that travels along an optical fiber is scrambled. This project is focused on finding a way to unscramble it, using holograms - patterns of light that encode all the information in an image, rather than just part of it as one would see in a 2D photograph. By projecting a hologram instead of a photograph, we can 'pre-scramble' the light, compensating for the effect of the fiber and allowing us to image deep inside the brain. We will design and build a machine that can make holograms extremely quickly - around 25 thousand of them per second. By carefully controlling them, we can project images that appear scrambled, but once they travel down the optical fiber, they turn into the pattern of light that we want.The instrument we would like to make is based on the same type of chip that is used in some digital projectors, consisting of tiny little mirrors that flip back and forth very rapidly. This lets them delay the light hitting them by a very small amount, which when all the pixels operate together, allows us to unscramble the light travelling through the optical fiber. Previously, we have shown that we can project holograms using a different technology, but this technology is very slow. In contrast, the new technique described here can image just as fast as a normal microscope, which means we can see more features in the brain, especially things that change, like electrical activity.The holographic projector we will develop is useful for many other applications - 3D printing, holographic TV, as well as controlling a mouse brain by switching neurons on and off. It is important because it is approximately one hundred times faster than other devices that can do similar things, so even if it doesn't work in the mouse brain, it will be very useful in other areas.
我们对大脑的了解大部分是因为我们可以使用显微镜对其进行成像。我们可以观察每个神经元内部的微小特征,了解它是如何构建的,或者通过使用在大脑部分工作时发光的染料来观察电活动。不幸的是,这意味着我们对大脑表面的了解远多于对埋藏在大脑深处的部分的了解,只是因为我们无法将大型显微镜挤进这么小的空间。为了真正了解大脑,我们还必须找到一种方法来对埋藏部分进行成像。将显微镜放入大脑内部很困难,因为镜头很大。以前,人们曾尝试使用微型显微镜进行成像,但是虽然使用这些显微镜可以很快地获得图像,但它们体积庞大,并且在插入时会对大脑造成相当大的损害。光纤可以获得相同的图像,但直径要小得多,这意味着损坏更少。可以理解的是,如果我们造成太多损害,我们就无法再确定我们在大脑中观察到的内容是否反映了它在自然状态下的行为方式;这种情况很大程度上是当今高分辨率深部脑成像的现状。不幸的是,沿着光纤传播的光是扰乱的。该项目的重点是找到一种方法来解读它,使用全息图——编码图像中所有信息的光图案,而不是像在 2D 照片中看到的那样只看到图像的一部分。通过投影全息图而不是照片,我们可以“预扰乱”光线,补偿光纤的影响,使我们能够对大脑深处进行成像。我们将设计和制造一台能够极快地制作全息图的机器——每秒大约 25,000 张。通过仔细控制它们,我们可以投射看起来杂乱的图像,但一旦它们沿着光纤传播,它们就会变成我们想要的光图案。我们想要制造的仪器基于与用于一些数字投影仪,由快速来回翻转的微小镜子组成。这使得它们能够以非常小的量延迟照射到它们的光线,当所有像素一起工作时,我们就可以解读通过光纤传播的光线。之前,我们已经证明我们可以使用不同的技术来投影全息图,但这种技术非常慢。相比之下,这里描述的新技术可以像普通显微镜一样快速成像,这意味着我们可以看到大脑中的更多特征,尤其是变化的东西,例如电活动。我们将开发的全息投影仪对于许多其他应用都很有用- 3D 打印、全息电视以及通过打开和关闭神经元来控制小鼠大脑。这很重要,因为它比其他可以做类似事情的设备快大约一百倍,所以即使它在小鼠大脑中不起作用,它在其他领域也将非常有用。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Focusing light in biological tissue through a multimode optical fiber: refractive index matching.
通过多模光纤将光聚焦在生物组织中:折射率匹配。
  • DOI:
    10.1364/ol.44.002386
  • 发表时间:
    2019-05-02
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Raphaël Turcotte;Carla C. Schmidt;N. Emptage;M. Booth
  • 通讯作者:
    M. Booth
Optical Quantal Analysis Using Ca2+ Indicators: A Robust Method for Assessing Transmitter Release Probability at Excitatory Synapses by Imaging Single Glutamate Release Events.
使用 Ca2 指示剂进行光学量子分析:通过对单个谷氨酸释放事件进行成像来评估兴奋性突触的递质释放概率的稳健方法。
Deconvolution for multimode fiber imaging: modeling of spatially variant PSF
多模光纤成像的反卷积:空间变异 PSF 的建模
  • DOI:
    10.1364/boe.399983
  • 发表时间:
    2020-07-29
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Raphaël Turcotte;Eusebiu Sutu;Carla C. Schmidt;N. Emptage;M. Booth
  • 通讯作者:
    M. Booth
Volumetric two-photon fluorescence imaging of live neurons using a multimode optical fiber.
使用多模光纤对活神经元进行体积双光子荧光成像。
  • DOI:
    http://dx.10.1364/ol.409464
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.6
  • 作者:
    Turcotte R
  • 通讯作者:
    Turcotte R
Subcellular spatial resolution achieved for deep-brain imaging in vivo using a minimally invasive multimode fiber.
使用微创多模光纤实现体内深部脑成像的亚细胞空间分辨率。
  • DOI:
    http://dx.10.1038/s41377-018-0111-0
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Vasquez
  • 通讯作者:
    Vasquez
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

N Emptage其他文献

N Emptage的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('N Emptage', 18)}}的其他基金

An interrogation of synaptic dysfunctions arising from human cognitive disease gene mutations using opto-physiological and neurochemical strategies.
使用光生理学和神经化学策略对人类认知疾病基因突变引起的突触功能障碍进行研究。
  • 批准号:
    MR/X02170X/1
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Research Grant
Achieving synaptic stability: An investigation of processes that maintain glutamate receptor clusters at synapses
实现突触稳定性:对突触维持谷氨酸受体簇的过程的研究
  • 批准号:
    BB/J018724/1
  • 财政年份:
    2013
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Research Grant
QUANTITATIVE EXAMINATION AND MODELING OF SINGLE MOLECULE MOTION IN LIVING NEURONES
活体神经元中单分子运动的定量检查和建模
  • 批准号:
    G0802613/1
  • 财政年份:
    2009
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Research Grant
In vivo microendoscopy for imaging deep regions of the brain
用于大脑深层区域成像的体内显微内窥镜检查
  • 批准号:
    G0701061/1
  • 财政年份:
    2008
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Research Grant
An analysis of synaptic plasticity at single synapses using the photolytically active AMPA receptor antagonist ANQX.
使用光解活性 AMPA 受体拮抗剂 ANQX 分析单个突触的突触可塑性。
  • 批准号:
    G0701480/1
  • 财政年份:
    2008
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Research Grant
An investigation of action potential triggered calcium release from a lysosomal store in hippocampal neurones
动作电位的研究触发海马神经元溶酶体储存的钙释放
  • 批准号:
    G0501572/1
  • 财政年份:
    2006
  • 资助金额:
    $ 19.22万
  • 项目类别:
    Research Grant

相似国自然基金

二级靶向型糖基共轭聚合物纳米药物用于近红外二区荧光成像引导的脑胶质瘤治疗
  • 批准号:
    32301153
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二区荧光探针标记工程菌可视化治疗脑胶质瘤的方法与机制研究
  • 批准号:
    82372022
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
双靶向-双锁型近红外荧光探针的构建及其在脑胶质瘤精准成像中的应用
  • 批准号:
    22304074
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
集成化双比率激活型近红外二区荧光探针用于脑内关联活性氧物种的同步检测与深度成像
  • 批准号:
    22304132
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于外泌体包被的荧光纳米探针用于脑胶质瘤硼药靶向递送监测与BNCT疗效评估
  • 批准号:
    22304073
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fast Multi-Functional 3D Imaging of Cellular Activities in Deep Tissue
深层组织细胞活动的快速多功能 3D 成像
  • 批准号:
    10861526
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
Development of multinuclear MRI for image guided therapy of glioma patients
开发用于神经胶质瘤患者图像引导治疗的多核 MRI
  • 批准号:
    10655918
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
A bidirectional deep brain interface to unravel the pathogenic role of vascular amyloid in Alzheimer's disease
双向深部脑接口揭示血管淀粉样蛋白在阿尔茨海默病中的致病作用
  • 批准号:
    10901002
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
BRAIN CONNECTS: Mapping Connectivity of the Human Brainstem in a Nuclear Coordinate System
大脑连接:在核坐标系中绘制人类脑干的连接性
  • 批准号:
    10664289
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
A high throughput multiplexed pipeline for models of Alzheimer’s Disease
用于阿尔茨海默病模型的高通量多重管道
  • 批准号:
    10766665
  • 财政年份:
    2023
  • 资助金额:
    $ 19.22万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了