Orchestration of adhesion signalling by the mechanosensors talin and vinculin.

通过机械传感器 talin 和 vinculin 协调粘附信号。

基本信息

  • 批准号:
    BB/P000681/1
  • 负责人:
  • 金额:
    $ 55.45万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Cells continuously sense and produce their surrounding environment, which consists of fibrillar material the cells can attach to and is called extracellular matrix (ECM). Cell-ECM communication is particularly important during development or regeneration processes that require specific cellular responses to changing environments. Cellular responses comprise changes in motile behaviour (e.g. closing of wounds), contractility (e.g. functioning of the cardiovascular system) but also active remodelling of their ECM for the purpose of formation of new functional tissue. Many studies have focused on how cells sense their environment, but we are still far from understanding the mechanisms how cells perceive environmental signals and how they are translated into signals within cells that promote specific cellular responses.The environment of cells alters enormously during development, normal ageing, injury and certain diseases. For example, the mechanical properties of the ECM is thought to influence tumour progression and increased breast matrix stiffness is associated with poor survival. Stiffening of ECM also causes cardiovascular malfunctioning. Intriguingly cells contribute to the production of specific matrix on one hand but also respond to this produced environment on the other hand. Therefore, understanding how cells sense and produce their ECM environment is critically important if we want to get a step closer to treating the roots of diseases and promote regeneration.Cells can feel or sense their environment by exerting forces on it and probing its deformation. To transmit forces, they 'grab' neighbouring structures using surface proteins, which are called integrins. These integrins not only bind to the environment of the cells but also connect to a skeleton inside the cells. This link is not direct but is regulated by components that couple or uncouple the two. We published a number of manuscripts showing that two of these coupling proteins, called talin and vinculin, are central to sensing of environmental changes. They are particularly important to measure the stiffness of their environment, they control cell migration, as well as cell growth and differentiation. In this proposal we also present important pilot data demonstrating that vinculin is critical for ECM remodelling. However how they do this is still unclear. In order to investigate how these proteins regulate the response to their environment, and to what extent they are involved in telling cells how to behave, the two laboratories in the prestigious Cell-Matrix Centre at the University of Manchester will team up and combine their long-standing expertise with the field of integrins signalling and cell-matrix interactions. The proposed research aims to to (i) understand the role of mechanical signals in the activation of talin and vinculin, (ii) how this activation helps vinculin and talin to associate with a large number other proteins that serve to exert specific signals (e.g. cell migration or cell growth) (iii) how vinculin with the newly found association of another protein called tensin is contributing to the formation and remodelling of ECM environment. To reach our goals, we will not only use cutting edge microscopy, biochemisty and molecular biology techniques but also a newly generated intracellular system whereby we can target proteins to specific compartments (mitochondria) in the cells which enable us to visualise and probe molecular interactions and behaviour under defined conditions. Our results will be combined into a model that outlines and potentially predicts how cells interpret and remodel their environment. Ultimately, the knowledge gained may lead to important changes in how we currently envisage environmental changes and their contribution to diseases. This may also lead to changes in treatment of patients, and it might thus, for example, contribute to improvements in disease prevention and in regeneration processes.
细胞不断感知并产生周围环境,该环境由细胞可以附着的纤维材料组成,称为细胞外基质 (ECM)。细胞-ECM 通讯在发育或再生过程中尤其重要,因为发育或再生过程需要特定的细胞对不断变化的环境做出反应。细胞反应包括运动行为(例如伤口闭合)、收缩性(例如心血管系统功能)的变化,还包括为了形成新的功能组织而主动重塑其 ECM。许多研究都集中在细胞如何感知环境上,但我们还远未了解细胞感知环境信号的机制以及它们如何转化为细胞内促进特定细胞反应的信号。细胞的环境在发育过程中发生巨大变化,正常情况下衰老、受伤和某些疾病。例如,ECM 的机械特性被认为会影响肿瘤的进展,而乳腺基质硬度的增加与生存率较低有关。 ECM 硬化还会导致心血管功能障碍。有趣的是,细胞一方面有助于特定基质的产生,另一方面也对这种产生的环境做出反应。因此,如果我们想进一步治疗疾病的根源并促进再生,了解细胞如何感知和产生其 ECM 环境至关重要。细胞可以通过对其施加力并探测其变形来感知或感知其环境。为了传递力,它们使用表面蛋白(称为整合素)“抓住”邻近的结构。这些整合素不仅与细胞环境结合,还与细胞内的骨架连接。该链接不是直接的,而是由将两者耦合或分离的组件调节。我们发表的许多手稿表明,其中两种耦合蛋白(称为talin和vinculin)对于感知环境变化至关重要。它们对于测量环境的硬度特别重要,它们控制细胞迁移以及细胞生长和分化。在此提案中,我们还提供了重要的试点数据,证明纽蛋白对于 ECM 重塑至关重要。然而他们如何做到这一点仍不清楚。为了研究这些蛋白质如何调节对其环境的反应,以及它们在多大程度上参与告诉细胞如何行为,曼彻斯特大学著名的细胞基质中心的两个实验室将合作并结合他们的长期研究成果。 - 整合素信号传导和细胞-基质相互作用领域的长期专业知识。拟议的研究旨在(i)了解机械信号在踝蛋白和纽蛋白激活中的作用,(ii)这种激活如何帮助纽蛋白和踝蛋白与大量其他蛋白质结合,这些蛋白质用于施加特定信号(例如细胞) (iii) 纽蛋白与新发现的另一种称为张力蛋白的蛋白质的结合如何促进 ECM 环境的形成和重塑。为了实现我们的目标,我们不仅将使用尖端的显微镜、生物化学和分子生物学技术,而且还将使用新生成的细胞内系统,通过该系统,我们可以将蛋白质靶向细胞中的特定区室(线粒体),从而使我们能够可视化和探测分子相互作用和在规定条件下的行为。我们的结果将被整合到一个模型中,该模型概述并可能预测细胞如何解释和重塑其环境。最终,所获得的知识可能会导致我们目前对环境变化及其对疾病的影响的看法发生重大变化。这也可能导致患者治疗的改变,因此可能有助于改善疾病预防和再生过程。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distinct focal adhesion protein modules control different aspects of mechanotransduction.
不同的粘着斑蛋白模块控制力转导的不同方面。
  • DOI:
    http://dx.10.1242/jcs.195362
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Stutchbury B
  • 通讯作者:
    Stutchbury B
Mechanotransduction at the cell-matrix interface.
细胞-基质界面的力转导。
Talin gets SHANKed in the fight for integrin activation.
塔林在整合素激活的斗争中被刺伤。
  • DOI:
    http://dx.10.1038/ncb3501
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    21.3
  • 作者:
    Atherton P
  • 通讯作者:
    Atherton P
Low-intensity pulsed ultrasound promotes cell motility through vinculin-controlled Rac1 GTPase activity.
低强度脉冲超声通过纽蛋白控制的 Rac1 GTPase 活性促进细胞运动。
  • DOI:
    http://dx.10.1242/jcs.192781
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Atherton P
  • 通讯作者:
    Atherton P
Light-Induced Molecular Adsorption of Proteins Using the PRIMO System for Micro-Patterning to Study Cell Responses to Extracellular Matrix Proteins.
使用 PRIMO 微图案系统进行光诱导蛋白质分子吸附,研究细胞对细胞外基质蛋白质的反应。
  • DOI:
    http://dx.10.3791/60092
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Melero C
  • 通讯作者:
    Melero C
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Christoph Ballestrem其他文献

Actin dynamics in living mammalian cells.
活哺乳动物细胞中的肌动蛋白动力学。
  • DOI:
    10.1002/ar.1092410111
  • 发表时间:
    1998-06-15
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Christoph Ballestrem;B. Wehrle;Beat A. Imhof
  • 通讯作者:
    Beat A. Imhof
Actin-dependent lamellipodia formation and microtubule-dependent tail retraction control-directed cell migration.
肌动蛋白依赖性板状伪足形成和微管依赖性尾部回缩控制指导的细胞迁移。
  • DOI:
    10.1091/mbc.11.9.2999
  • 发表时间:
    2000-09-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Christoph Ballestrem;B. Wehrle;Boris Hinz;Beat A. Imhof
  • 通讯作者:
    Beat A. Imhof
PECAM-1/CD31 trans-homophilic binding at the intercellular junctions is independent of its cytoplasmic domain; evidence for heterophilic interaction with integrin alphavbeta3 in Cis.
PECAM-1/CD31 在细胞间连接处的反式同源结合与其胞质结构域无关;
  • DOI:
    10.1091/mbc.11.9.3109
  • 发表时间:
    2000-09-01
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Cindy W.Y. Wong;G. Wiedle;Christoph Ballestrem;B. Wehrle;Susanne Etteldorf;M. Bruckner;Britta Engelhardt;R. Gisler;Beat A. Imhof
  • 通讯作者:
    Beat A. Imhof

Christoph Ballestrem的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Christoph Ballestrem', 18)}}的其他基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Research Grant
How does the desmosome-actin crosstalk regulate desmosome function?
桥粒-肌动蛋白串扰如何调节桥粒功能?
  • 批准号:
    BB/X008827/1
  • 财政年份:
    2023
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Research Grant
Orchestration of adhesion signalling networks by the tensins and their impact in cell motility and matrix remodelling.
张力蛋白对粘附信号网络的协调及其对细胞运动和基质重塑的影响。
  • 批准号:
    BB/V016326/1
  • 财政年份:
    2022
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Research Grant
Determination of the mechanisms of desmosome loss during EMT
EMT 过程中桥粒丢失机制的确定
  • 批准号:
    BB/R001707/1
  • 财政年份:
    2018
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Research Grant
An upright confocal microscope for multidisciplinary research
用于多学科研究的正置共焦显微镜
  • 批准号:
    BB/R014361/1
  • 财政年份:
    2018
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Research Grant
The role of talin and vinculin in neuronal mechanosensing.
踝蛋白和纽蛋白在神经元机械传感中的作用。
  • 批准号:
    BB/M020630/1
  • 财政年份:
    2015
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Research Grant
Vinculin and associated signalling networks in the regulation of cell motility
纽蛋白和相关信号网络在细胞运动调节中的作用
  • 批准号:
    BB/G004552/1
  • 财政年份:
    2009
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Research Grant

相似国自然基金

黏附分子ICAM-1对于肺癌细胞生存和凋亡的作用及机制研究
  • 批准号:
    31900536
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
IQGAP1通过Hax1-EB2复合体调控细胞迁移的分子机制研究
  • 批准号:
    31801173
  • 批准年份:
    2018
  • 资助金额:
    27.0 万元
  • 项目类别:
    青年科学基金项目
幽门螺杆菌感染促进肿瘤相关成纤维细胞与胃癌细胞的互作及机制研究
  • 批准号:
    31760328
  • 批准年份:
    2017
  • 资助金额:
    36.0 万元
  • 项目类别:
    地区科学基金项目
PEAK1通过FAK-CTTN-Arp2/3信号调控细胞迁移的分子机制研究
  • 批准号:
    31701218
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
LRP12对整合素α4β1介导的细胞黏附与迁移的调控及机制研究
  • 批准号:
    31701219
  • 批准年份:
    2017
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y004841/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Research Grant
Novel mechano-signalling pathways at sites of cellular adhesion
细胞粘附位点的新型机械信号传导途径
  • 批准号:
    DP240101768
  • 财政年份:
    2024
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Discovery Projects
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
  • 批准号:
    BB/Y005414/1
  • 财政年份:
    2024
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Research Grant
Subcellular organization of Adhesion G-Protein Coupled Receptor (aGPCR) signalling.
粘附 G 蛋白偶联受体 (aGPCR) 信号传导的亚细胞组织。
  • 批准号:
    RGPIN-2019-06166
  • 财政年份:
    2022
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Discovery Grants Program - Individual
Orchestration of adhesion signalling networks by the tensins and their impact in cell motility and matrix remodelling.
张力蛋白对粘附信号网络的协调及其对细胞运动和基质重塑的影响。
  • 批准号:
    BB/V016326/1
  • 财政年份:
    2022
  • 资助金额:
    $ 55.45万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了