LeMuR: Plant Root Phenotyping via Learned Multi-resolution Image Segmentation

LeMuR:通过学习的多分辨率图像分割进行植物根表型分析

基本信息

  • 批准号:
    BB/P026834/1
  • 负责人:
  • 金额:
    $ 18.25万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2017
  • 资助国家:
    英国
  • 起止时间:
    2017 至 无数据
  • 项目状态:
    已结题

项目摘要

Plant phenotyping - the measurement of quantitative data on plant structure and function from image and sensor data - is a key bottleneck holding back efforts towards global food security; that is, providing enough food for a growing population. The roots of food crops are clearly important for the development of the crop itself, yet root phenotyping is particularly challenging, as the roots grow in soil. Though methods of imaging roots in soil are emerging, they remain slow and expensive. Large-scale experiments are still performed using artificial growth media (gel, filter paper etc.) that allow the root to be imaged using conventional equipment. Analysis of the resulting images requires the root to be separated from its background and a structural description of the root architecture to be produced and presented to the user. But doing this fully automatically is a challenge, and most software tools written to date work with very specific sets of images, and tend to break if used outside of the scenarios they were designed for.In this proposal we will develop cutting-edge deep learning analysis approaches to build a much more general software tool. So-called deep approaches are revolutionising image analysis, with large companies developing similar techniques to analyse other image sets, such as for diagnosing medical conditions, to great effect. The proposed approach, LeMuR (Learned Multi-Resolution image segmentation), will exploit the common structure of root image analysis tasks, and recent advances in deep machine learning, to produce a flexible plant root phenotyping tool that can be easily adapted, without re-writing code, to new laboratory environments and imaging techniques.We propose two main developments. First, a software tool LeMuRoot which will be designed to work across a wide variety of root system data sets right out of the box, compared to the limited application of traditional tools. Second, a software framework (LeMuRLearn) to allow biologists themselves to adapt the tool to even more images beyond those that LeMuRoot was designed to work with. By supplying their own image data sets annotated using a novel user interface which will form part of LeMuRLearn, biologists will be able to re-train the core model underlying the tools, allowing them to improve the quality of results for their particular data. In a further novel process, biologists will be able to seamlessly share their newly trained tool with the community, which in turn can be used as a base for further development. This will allow LeMuRLearn to incrementally improve over time, and for it to use different underlying models for a wider variety of image data sets than was conceived of at initial release.This is exciting for two main reasons. First, previous development of software tools has by necessity been limited to computer scientists who are capable programmers - here we put the continued development of the tool in the hands of the biology community themselves. Second, by sharing the core model underlying the tool (called the LeMuRNet), biologists can share with the community without fear of sharing raw data or results.Combined with hiding the computational complexity of both the analysis and evolution process behind an accessible user interface, the potential to disrupt the current process for image analysis tool development and use with plant science (and beyond) is high.
植物表型——根据图像和传感器数据测量植物结构和功能的定量数据——是阻碍全球粮食安全努力的一个关键瓶颈;也就是说,为不断增长的人口提供足够的食物。粮食作物的根显然对于作物本身的发育很重要,但根表型分析尤其具有挑战性,因为根生长在土壤中。尽管对土壤中的根进行成像的方法正在出现,但它们仍然缓慢且昂贵。大规模实验仍然使用人工生长介质(凝胶、滤纸等)进行,这些介质允许使用传统设备对根部进行成像。对结果图像的分析需要将根与其背景分离,并生成根体系结构的结构描述并将其呈现给用户。但完全自动地做到这一点是一个挑战,迄今为止编写的大多数软件工具都适用于非常特定的图像集,如果在其设计的场景之外使用,则往往会崩溃。在本提案中,我们将开发尖端的深度学习分析方法来构建更通用的软件工具。所谓的深度方法正在彻底改变图像分析,大公司开发类似的技术来分析其他图像集,例如诊断医疗状况,取得了巨大的效果。所提出的方法 LeMuR(学习型多分辨率图像分割)将利用根图像分析任务的通用结构以及深度机器学习的最新进展,来生成灵活的植物根表型分析工具,该工具可以轻松适应,无需重新设计。编写代码,适应新的实验室环境和成像技术。我们提出了两个主要发展方向。首先,软件工具 LeMuRoot 被设计为开箱即用,可以在各种根系统数据集上工作,而传统工具的应用有限。其次,软件框架 (LeMuRLearn) 允许生物学家自己调整该工具,以适应超出 LeMuRoot 设计处理范围的更多图像。通过提供自己的图像数据集,并使用新颖的用户界面(将构成 LeMuRLearn 的一部分)进行注释,生物学家将能够重新训练工具底层的核心模型,从而提高特定数据的结果质量。在进一步新颖的过程中,生物学家将能够与社区无缝分享他们新训练的工具,而这些工具又可以用作进一步开发的基础。这将使 LeMuRLearn 随着时间的推移逐步改进,并使其能够使用不同的底层模型来处理比最初发布时设想的更广泛的图像数据集。这令人兴奋的主要原因有两个。首先,以前软件工具的开发必然仅限于有能力的程序员的计算机科学家——在这里,我们将工具的持续开发交给了生物学界自己。其次,通过共享该工具(称为 LeMuRNet)底层的核心模型,生物学家可以与社区共享,而不必担心共享原始数据或结果。结合将分析和进化过程的计算复杂性隐藏在可访问的用户界面后面,破坏当前图像分析工具开发和植物科学(及其他领域)使用过程的潜力很大。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Identification of QTL and underlying genes for root system architecture associated with nitrate nutrition in hexaploid wheat
  • DOI:
    10.1016/s2095-3119(21)63700-0
  • 发表时间:
    2022-03-15
  • 期刊:
  • 影响因子:
    4.8
  • 作者:
    Griffiths, Marcus;Atkinson, Jonathan A.;Wells, Darren M.
  • 通讯作者:
    Wells, Darren M.
Predicting Plant Growth from Time-Series Data Using Deep Learning
  • DOI:
    10.3390/rs13030331
  • 发表时间:
    2021-02-01
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Yasrab, Robail;Zhang, Jincheng;Pound, Michael P.
  • 通讯作者:
    Pound, Michael P.
RootNav 2.0: Deep learning for automatic navigation of complex plant root architectures
  • DOI:
    10.1101/709147
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
    R. Yasrab;J. Atkinson;D. Wells;A. French;T. Pridmore;Michael P. Pound
  • 通讯作者:
    R. Yasrab;J. Atkinson;D. Wells;A. French;T. Pridmore;Michael P. Pound
X-ray CT reveals 4D root system development and lateral root responses to nitrate in soil
  • DOI:
    10.1002/ppj2.20036
  • 发表时间:
    2022-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Griffiths, M.
  • 通讯作者:
    Griffiths, M.
Uncovering the hidden half of plants using new advances in root phenotyping.
  • DOI:
    10.1016/j.copbio.2018.06.002
  • 发表时间:
    2019-03
  • 期刊:
  • 影响因子:
    7.7
  • 作者:
    Atkinson JA;Pound MP;Bennett MJ;Wells DM
  • 通讯作者:
    Wells DM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Pound其他文献

Application of RESNET50 Convolution Neural Network for the Extraction of Optical Parameters in Scattering Media
RESNET50卷积神经网络在散射介质光学参数提取中的应用
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bowen Deng;Yihan Zhang;Andrew Parkes;Alexander Bentley;Amanda J. Wright;Michael Pound;Michael Somekh
  • 通讯作者:
    Michael Somekh

Michael Pound的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Pound', 18)}}的其他基金

Digging Deeper with AI: Canada-UK-US Partnership for Next-generation Plant Root Anatomy Segmentation
利用人工智能进行更深入的挖掘:加拿大、英国、美国合作开发下一代植物根部解剖分割
  • 批准号:
    BB/Y513908/1
  • 财政年份:
    2024
  • 资助金额:
    $ 18.25万
  • 项目类别:
    Research Grant
Learn From The Best: training AI using biological expert attention
向最优秀的人学习:利用生物专家的注意力训练人工智能
  • 批准号:
    BB/T012129/1
  • 财政年份:
    2020
  • 资助金额:
    $ 18.25万
  • 项目类别:
    Research Grant

相似国自然基金

赤霉素驱动香根草根际微生物群落组装提高植物萃镉效率机制
  • 批准号:
    42307034
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于根际氮循环微生物解析内蒙古典型草原植物的养分利用策略调控机制
  • 批准号:
    32371722
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
植酸酶协同砷超富集植物蜈蚣草高效吸收砷磷效应及根际微观机制研究
  • 批准号:
    42307013
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
秦岭暖温带森林优势木本植物吸收根磷获取策略的权衡及驱动因子研究
  • 批准号:
    32301361
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
气溶胶有机质沉降对滨海湿地植物根-土界面PAHs吸附-迁移与生物有效性行为的影响机制
  • 批准号:
    32301420
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

植物科学に根差した「雰囲気」の解明と展開
植根于植物科学的“氛围”的阐释和发展
  • 批准号:
    24H00710
  • 财政年份:
    2024
  • 资助金额:
    $ 18.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
地上環境を根系形態に反映するプラスチド依存的な植物長距離シグナル機構の解明
阐明植物中质体依赖性长距离信号机制,反映根系形态中的地上环境
  • 批准号:
    24KJ0758
  • 财政年份:
    2024
  • 资助金额:
    $ 18.25万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
スギ・ヒノキに共生する菌根菌の多様性と林床植物との菌根菌ネットワークの解明
阐明雪松和柏树中共存的菌根真菌的多样性以及与森林地面植物的菌根真菌网络
  • 批准号:
    23K23647
  • 财政年份:
    2024
  • 资助金额:
    $ 18.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
植物と菌根菌共生から紐解く、植物群集の決定要因の緯度クライン
从植物与菌根真菌之间的共生阐明植物群落决定因素的纬度
  • 批准号:
    24K18191
  • 财政年份:
    2024
  • 资助金额:
    $ 18.25万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
根から排出される植物ホルモンの生物学的な意義の解明に向けて
阐明从根部分泌的植物激素的生物学意义
  • 批准号:
    24K02047
  • 财政年份:
    2024
  • 资助金额:
    $ 18.25万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了