Integrated microscopy approach to protein assembly on and in membranes

膜上和膜内蛋白质组装的集成显微镜方法

基本信息

  • 批准号:
    BB/N015487/1
  • 负责人:
  • 金额:
    $ 58.42万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2016
  • 资助国家:
    英国
  • 起止时间:
    2016 至 无数据
  • 项目状态:
    已结题

项目摘要

Proteins are key building blocks and the working horses of the living cell. They generate energy, make muscles contract, and translate light in our eyes into an image as perceived by our brain, to name but a few of many examples. In many cases, proteins need to form larger assemblies to carry out their biological function. Incorrect assembly causes biological malfunction and disease. Hence there is a general interest to understand how proteins form such larger assemblies. However, though we have an extensive toolkit to determine the structures of proteins and their assemblies, it is much harder to trace the processes by which these assemblies are being built.In this project, we will therefore develop new methodology to visualise protein assembly at length and time scales that will enable us to determine how such processes take place. Because the therefore required resolution can not be achieved by one technique alone, we will use a combination of different microscopy techniques: Single-molecule fluorescence microscopy, which can track individual labelled proteins as they move about; atomic force microscopy, which can visualise protein assemblies as they are being formed; and electron microscopy, which can provide static snapshots of the structure of proteins and protein assemblies.To test this correlative and integrated microscopy approach, we will apply it to a protein (named perforin) that is used by the immune system to attack virally infected and cancerous cells in the human body, essentially by perforating the membranes that protect cells from their environment. Perforin drills holes in these membranes by forming assemblies of several tens of proteins that span the membrane.We aim to understand the mechanisms of membrane pore formation by these proteins, out of a fundamental interest in how this nanometre-scale machinery works, to better understand diseases or enhanced vulnerability to cancer caused by malfunctioning perforin, and because mechanistic understanding can facilitate the design of drugs that prevent such pores from being formed when the immune response needs to be suppressed transplant, for example during organ transplantation.
蛋白质是活细胞的关键组成部分和工作马。它们产生能量,使肌肉收缩,并将我们眼中的光转化为我们大脑感知的图像,仅举几个例子。在许多情况下,蛋白质需要形成更大的组装体才能发挥其生物学功能。不正确的组装会导致生物功能障碍和疾病。因此,人们普遍有兴趣了解蛋白质如何形成如此大的组装体。然而,尽管我们有一个广泛的工具包来确定蛋白质及其组装的结构,但追踪这些组装的构建过程要困难得多。因此,在这个项目中,我们将开发新的方法来详细可视化蛋白质组装以及时间尺度,使我们能够确定这些过程如何发生。由于单独使用一种技术无法实现所需的分辨率,因此我们将结合使用不同的显微镜技术: 单分子荧光显微镜,可以跟踪单个标记蛋白质的移动;原子力显微镜,可以在蛋白质组装体形成时将其可视化;和电子显微镜,它可以提供蛋白质和蛋白质组装体结构的静态快照。为了测试这种相关和集成的显微镜方法,我们将其应用于免疫系统用来攻击病毒感染和感染的蛋白质(称为穿孔素)。人体中的癌细胞,主要是通过刺穿保护细胞免受环境影响的膜来实现的。穿孔素通过形成数十个跨膜蛋白质的组合体在这些膜上钻孔。我们的目标是了解这些蛋白质形成膜孔的机制,出于对这种纳米级机械如何工作的根本兴趣,以便更好地理解穿孔素功能失常引起的疾病或增加患癌症的可能性,并且因为对机制的理解可以促进药物的设计,当需要抑制免疫反应的移植时,例如在器官移植期间,防止这种孔的形成。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Lipid specificity of the immune effector perforin
免疫效应器穿孔素的脂质特异性
  • DOI:
    10.1101/2020.04.22.054890
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hodel A
  • 通讯作者:
    Hodel A
Polypeptide Materials - Methods and Protocols
多肽材料 - 方法和方案
  • DOI:
    10.1007/978-1-0716-0928-6_15
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Hammond K
  • 通讯作者:
    Hammond K
Antimicrobial peptide capsids of de novo design.
  • DOI:
    10.1038/s41467-017-02475-3
  • 发表时间:
    2017-12-22
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    De Santis E;Alkassem H;Lamarre B;Faruqui N;Bella A;Noble JE;Micale N;Ray S;Burns JR;Yon AR;Hoogenboom BW;Ryadnov MG
  • 通讯作者:
    Ryadnov MG
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bart Hoogenboom其他文献

Bart Hoogenboom的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bart Hoogenboom', 18)}}的其他基金

Pushing the envelope: atomic force microscopy imaging of the bacterial outer membrane during growth and division
挑战极限:生长和分裂过程中细菌外膜的原子力显微镜成像
  • 批准号:
    BB/X00760X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 58.42万
  • 项目类别:
    Research Grant
Disruption And Resistance In Bacterial Cell Envelopes Challenged By Polymyxins
多粘菌素挑战细菌细胞包膜的破坏和耐药性
  • 批准号:
    BB/X001547/1
  • 财政年份:
    2023
  • 资助金额:
    $ 58.42万
  • 项目类别:
    Research Grant
Turnkey video-rate atomic force microscopy for nanometre resolution imaging of functional biomolecules and cellular surfaces
用于功能生物分子和细胞表面纳米分辨率成像的交钥匙视频原子力显微镜
  • 批准号:
    BB/W019345/1
  • 财政年份:
    2022
  • 资助金额:
    $ 58.42万
  • 项目类别:
    Research Grant
The Role of Physical Membrane Properties in Tumour Cell Resistance to Perforin
物理膜特性在肿瘤细胞对穿孔素的抵抗中的作用
  • 批准号:
    MR/V009702/1
  • 财政年份:
    2021
  • 资助金额:
    $ 58.42万
  • 项目类别:
    Research Grant
Benchtop, turnkey super-resolution microscopy for biology, biophysics and biotechnology
适用于生物学、生物物理学和生物技术的台式交钥匙超分辨率显微镜
  • 批准号:
    BB/T01749X/1
  • 财政年份:
    2020
  • 资助金额:
    $ 58.42万
  • 项目类别:
    Research Grant
Dynamics of bacterial killing by the membrane attack complex
膜攻击复合物杀灭细菌的动力学
  • 批准号:
    MR/R000328/1
  • 财政年份:
    2018
  • 资助金额:
    $ 58.42万
  • 项目类别:
    Research Grant
Dynamics and pathways of assembly in membrane pore formation
膜孔形成中的组装动力学和途径
  • 批准号:
    BB/J006254/1
  • 财政年份:
    2012
  • 资助金额:
    $ 58.42万
  • 项目类别:
    Research Grant
Fast and Angström-resolution AFM to visualise conformational change in biomolecules
快速且埃级分辨率的 AFM 可可视化生物分子的构象变化
  • 批准号:
    BB/G011729/1
  • 财政年份:
    2009
  • 资助金额:
    $ 58.42万
  • 项目类别:
    Research Grant

相似国自然基金

TRPV4通道在急性肺损伤中的作用及其机制的研究
  • 批准号:
    81000028
  • 批准年份:
    2010
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
红树对重金属的定位累积及耦合微观分析与耐受策略研究
  • 批准号:
    30970527
  • 批准年份:
    2009
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
根管粪肠球菌的超微结构分析与药物干预研究
  • 批准号:
    30870670
  • 批准年份:
    2008
  • 资助金额:
    36.0 万元
  • 项目类别:
    面上项目
显微近红外图像成像方法的研究及其在生物学中的应用
  • 批准号:
    20575076
  • 批准年份:
    2005
  • 资助金额:
    25.0 万元
  • 项目类别:
    面上项目
心肌缺血磁共振波谱与分子基础研究
  • 批准号:
    39970227
  • 批准年份:
    1999
  • 资助金额:
    13.0 万元
  • 项目类别:
    面上项目

相似海外基金

COG NCTN Integrated Translational Science Center for Hematopoietic Malignancies in Children
COG NCTN 儿童造血系统恶性肿瘤综合转化科学中心
  • 批准号:
    10561589
  • 财政年份:
    2022
  • 资助金额:
    $ 58.42万
  • 项目类别:
Blink, Lacrimation, and Nociception: Precision Mapping and Integrated Atlas Generation of Corneal Trigeminal Afferents
眨眼、流泪和伤害感受:角膜三叉神经传入的精确绘图和集成图谱生成
  • 批准号:
    10585769
  • 财政年份:
    2022
  • 资助金额:
    $ 58.42万
  • 项目类别:
COG NCTN Integrated Translational Science Center for Hematopoietic Malignancies in Children
COG NCTN 儿童造血系统恶性肿瘤综合转化科学中心
  • 批准号:
    10600096
  • 财政年份:
    2022
  • 资助金额:
    $ 58.42万
  • 项目类别:
Blink, Lacrimation, and Nociception: Precision Mapping and Integrated Atlas Generation of Corneal Trigeminal Afferents
眨眼、流泪和伤害感受:角膜三叉神经传入的精确绘图和集成图谱生成
  • 批准号:
    10707309
  • 财政年份:
    2022
  • 资助金额:
    $ 58.42万
  • 项目类别:
Development of clinical-fit aptamer targeting CYP24A1 using an integrated approach of high-speed atomic force microscopy and molecular docking
使用高速原子力显微镜和分子对接的集成方法开发针对 CYP24A1 的临床适配体
  • 批准号:
    21K15239
  • 财政年份:
    2021
  • 资助金额:
    $ 58.42万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了