A synthetic biology approach to enhancing chemical production by anaerobic bacteria (SynBio-AnOx)

提高厌氧细菌化学产量的合成生物学方法 (SynBio-AnOx)

基本信息

  • 批准号:
    BB/M002454/1
  • 负责人:
  • 金额:
    $ 45.02万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Electricity, fuels and chemicals are at present mostly made from oil, gas and coal, which will become increasingly expensive and eventually run out. Consuming these fossil carbon sources also releases carbon dioxide into the atmosphere and oceans, adversely affecting the environment and climate. New, sustainable technologies are needed to generate electricity, heat our homes, power our vehicles, and make the chemicals needed in all kinds of products and industries. Developing and adopting these technologies is important for our well-being, economic prosperity and security.Microbial fermentation is an important technology, involving the conversion of sugars to alcohol or other chemicals by yeast or bacteria in the absence of oxygen. Fermentation has been used for centuries in the production of bread, alcoholic drinks, and dairy products. Using modern techniques including genetic modification, it is now possible to develop new fermentation processes in which microbes convert feedstocks (sugars, starch or crop waste) into useful fuels and chemicals that are conventionally made from oil. These processes can be operated in a sustainable way, and could be part of a carbon-neutral economy.The overall aim of this research programme is to produce bacterial strains and knowledge useful in the development of new fermentation processes for the sustainable manufacture of chemicals. Previous research on improving fermentation strains has made the best progress with facultative anaerobes, which are organisms able to grow either in the presence or absence of oxygen. This programme aims to make similar progress in techniques for improving strict (obligate) anaerobes, which are organisms that only grow in the absence of oxygen, because some strict anaerobes have useful properties for the sustainable manufacture of chemicals.By the end of this research programme we aim to produce one or more new strains of the strictly anaerobic bacterium Clostridium acetobutylicum that continuously, efficiently and reliably convert feedstocks to the useful chemical butanol, without making by-products.To achieve these aims, we will use and develop techniques from a new area of science and engineering called synthetic biology. We will develop methods to fine-tune and measure gene expression in Clostridium acetobutylicum, and new approaches to increase, decrease and otherwise modify the expression of selected genes. These new techniques will allow us to make progress that would not be possible using previous approaches.If successful, we will work with a UK company to test the suitability of the new bacterial strains for commercial use.This research has several potential applications and benefits. The new bacterial strains could directly or indirectly lead to improved industrial processes for the microbial manufacture of butanol, which is a valuable chemical and an excellent fuel. One of the world's leading microbial butanol manufacturing companies is based in the UK, so this research could lead to UK jobs and other contributions to the UK economy and UK wealth. More broadly, the knowledge produced by this research should help researchers and companies develop new fermentation processes for the sustainable manufacture of other chemicals.
目前电力、燃料和化学品主要由石油、天然气和煤炭制成,这些产品将变得越来越昂贵并最终耗尽。消耗这些化石碳源还会将二氧化碳释放到大气和海洋中,对环境和气候产生不利影响。需要新的、可持续的技术来发电、为我们的家庭供暖、为我们的车辆提供动力,以及制造各种产品和行业所需的化学品。开发和采用这些技术对于我们的福祉、经济繁荣和安全非常重要。微生物发酵是一项重要技术,涉及在缺氧的情况下通过酵母或细菌将糖转化为酒精或其他化学物质。几个世纪以来,发酵一直用于面包、酒精饮料和乳制品的生产。利用包括基因改造在内的现代技术,现在可以开发新的发酵工艺,其中微生物将原料(糖、淀粉或农作物废物)转化为传统上由石油制成的有用燃料和化学品。这些过程可以以可持续的方式运行,并且可以成为碳中和经济的一部分。该研究计划的总体目标是产生可用于开发新的发酵过程以可持续制造化学品的细菌菌株和知识。先前关于改进发酵菌株的研究在兼性厌氧菌方面取得了最大进展,兼性厌氧菌是能够在有氧或无氧条件下生长的生物体。该计划旨在在改善严格(专性)厌氧菌的技术方面取得类似的进展,这些厌氧菌是只在没有氧气的情况下生长的生物体,因为一些严格厌氧菌具有可持续生产化学品的有用特性。 在该研究计划结束时我们的目标是生产一种或多种严格厌氧细菌丙酮丁醇梭菌的新菌株,能够连续、高效、可靠地将原料转化为有用的化学丁醇,而不产生副产品。为了实现这些目标,我们将使用和开发称为合成生物学的科学和工程新领域的技术。我们将开发微调和测量丙酮丁醇梭菌基因表达的方法,以及增加、减少和以其他方式修饰选定基因表达的新方法。这些新技术将使我们能够取得使用以前的方法不可能取得的进展。如果成功,我们将与一家英国公司合作,测试新细菌菌株是否适合商业用途。这项研究有几个潜在的应用和好处。新的细菌菌株可以直接或间接改进丁醇微生物制造的工业流程,丁醇是一种有价值的化学品和优质燃料。世界领先的微生物丁醇制造公司之一位于英国,因此这项研究可能会为英国带来就业机会,并对英国经济和财富做出其他贡献。更广泛地说,这项研究产生的知识应该有助于研究人员和公司开发新的发酵工艺,以可持续地生产其他化学品。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
In Vitro Susceptibility to Closthioamide among Clinical and Reference Strains of Neisseria gonorrhoeae
淋病奈瑟菌临床菌株和参考菌株对硫代酰胺的体外敏感性
Start-Stop Assembly: a functionally scarless DNA assembly system optimized for metabolic engineering.
Start-Stop Assembly:一种针对代谢工程而优化的功能性无痕 DNA 组装系统。
  • DOI:
    http://dx.10.1093/nar/gky1182
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Taylor GM
  • 通讯作者:
    Taylor GM
Combinatorial metabolic engineering platform enabling stable overproduction of lycopene from carbon dioxide by cyanobacteria
组合代谢工程平台可实现蓝藻从二氧化碳中稳定过量生产番茄红素
  • DOI:
    http://dx.10.1101/2020.03.11.983833
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Taylor G
  • 通讯作者:
    Taylor G
Design and Implementation of Multi-protein Expression Constructs and Combinatorial Libraries using Start-Stop Assembly.
使用启停组装设计和实现多蛋白表达构建体和组合文库。
Combinatorial assembly platform enabling engineering of genetically stable metabolic pathways in cyanobacteria.
组合组装平台能够对蓝藻中遗传稳定的代谢途径进行工程设计。
  • DOI:
    http://dx.10.1093/nar/gkab791
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    14.9
  • 作者:
    Taylor GM
  • 通讯作者:
    Taylor GM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John Heap其他文献

John Heap的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John Heap', 18)}}的其他基金

GlycoCell Engineering Biology Mission Hub: Transforming glycan biomanufacture for health
GlycoCell 工程生物学任务中心:转变聚糖生物制造以促进健康
  • 批准号:
    BB/Y008472/1
  • 财政年份:
    2024
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Research Grant
Development and application of an advanced glycan production platform
先进聚糖生产平台的开发与应用
  • 批准号:
    BB/W005816/1
  • 财政年份:
    2022
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Research Grant
Bioproduction of a high-value synthetic ketone ester and its precursors for a UK-based value and supply chain
高价值合成酮酯及其前体的生物生产,用于英国的价值和供应链
  • 批准号:
    BB/V001396/1
  • 财政年份:
    2021
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Research Grant
14-PSIL: Plug and Play Photosynthesis for RuBisCO Independent Fuels
14-PSIL:RuBisCO 独立燃料的即插即用光合作用
  • 批准号:
    BB/M011321/1
  • 财政年份:
    2014
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Research Grant
Royal Air Force Operation "Deep Freeze" Support
皇家空军“深度冻结”行动支持
  • 批准号:
    7809871
  • 财政年份:
    1978
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Contract

相似国自然基金

采用合成生物学方法建立高效合成中长链PHA的恶臭假单胞菌KT2440小基因组细胞工厂
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
系统生物学方法解析黑曲霉生长与产物合成相关联的形态遗传网络
  • 批准号:
    31961133021
  • 批准年份:
    2019
  • 资助金额:
    200 万元
  • 项目类别:
    国际(地区)合作与交流项目
基于代谢组学技术集成的九州虫草种质资源评价及虫草素生物合成的转录组、蛋白质组学研究
  • 批准号:
    21877075
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
基于线性双链DNA与门逻辑基因线路的合成生物学新方法的开发与应用
  • 批准号:
    31870860
  • 批准年份:
    2018
  • 资助金额:
    59.0 万元
  • 项目类别:
    面上项目
烟酰胺嘧啶二核苷酸生物合成与应用的基础研究
  • 批准号:
    21778053
  • 批准年份:
    2017
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目

相似海外基金

A synthetic biology approach to unlocking the role of the ribosome in cell competition
揭示核糖体在细胞竞争中的作用的合成生物学方法
  • 批准号:
    489621
  • 财政年份:
    2023
  • 资助金额:
    $ 45.02万
  • 项目类别:
    Operating Grants
2023 Collective Behavior Gordon Research Conference
2023年集体行为戈登研究会议
  • 批准号:
    10683596
  • 财政年份:
    2023
  • 资助金额:
    $ 45.02万
  • 项目类别:
2023 Collective Behavior Gordon Research Conference
2023年集体行为戈登研究会议
  • 批准号:
    10683596
  • 财政年份:
    2023
  • 资助金额:
    $ 45.02万
  • 项目类别:
Regulation of KRAS plasma membrane targeting by defined glycosphingolipids.
通过特定的鞘糖脂调节 KRAS 质膜靶向。
  • 批准号:
    10718459
  • 财政年份:
    2023
  • 资助金额:
    $ 45.02万
  • 项目类别:
Mapping the Cerebellar Origins of Medulloblastoma Subgroups
绘制髓母细胞瘤亚群的小脑起源图
  • 批准号:
    10587809
  • 财政年份:
    2023
  • 资助金额:
    $ 45.02万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了