Innovative Routes to Monoterpene Hydrocarbons and Their High Value Derivatives

单萜烃及其高价值衍生物的创新路线

基本信息

  • 批准号:
    BB/M000354/1
  • 负责人:
  • 金额:
    $ 387.23万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2015
  • 资助国家:
    英国
  • 起止时间:
    2015 至 无数据
  • 项目状态:
    已结题

项目摘要

Propelling chemicals/natural products production towards 'green' and more sustainable manufacturing processes will require the harnessing of the power of Synthetic Biology (SynBio) and integration with more traditional biocatalytic and chemo-catalytic processes. SynBio is a potentially disruptive technology, but major de-risking is required before the SynBio of chemicals manufacture can replace traditional manufacturing processes. In part, this is reflected in the major costs associated with the development of new manufacturing plant in the industrial sector, which is required to transition from conventional petrochemical/natural resource-based manufacturing to SynBio-based chemicals manufacturing.In this programme we will design, build and integrate new SynBio technology that accelerates delivery of bespoke SynBio solutions for chemicals/natural products synthesis. Our focus is on a major group of industrially valuable compounds, the monoterpenoids, which offer new opportunities for bio-based production using SynBio. By adopting modular 'plug-and-play' platform approaches and a production pipeline that embraces the 'design-build-test-deploy' life-cycle we will turn knowledge assets into innovative chemicals production solutions for monoterpenoid compounds. We will recruit and design bespoke biological parts (e.g. enzyme catalysts; transporters; membrane components) and assemble them in novel ways to create a bio-based production pipeline contained within a synthetic, engineered microbial biofactory. Iterative design-build-test-deploy life-cycles will be used to optimise production of monoterpenoid chemicals in defined proof-of-principle projects. Using these Demonstrator Projects, we will deliver innovative SynBio approaches for chemicals/natural products biosynthesis and promote leading capability development that will stimulate interactions with industry and other stakeholders. These projects will require the unique, multidisciplinary environment (including bioscience, engineering, chemistry and computational science) and collaborative working culture represented by the team of applicants. Enzyme-catalysed SynBio-based synthesis is attractive: regio- and stereo-selective biotransformation, use of 'green' reaction conditions and lack of toxic by-products combine to make biosynthesis attractive in sustainable manufacturing. US and European legislation acknowledges that products from biosynthetic manufacturing processes are considered 'natural'. This adds significant market value, especially in foods and flavourings manufacture, as is the case in the production and use of monoterpenoids. The SynBio approaches we develop will also generate new chemical entities not readily accessible using traditional synthetic approaches. This will provide new opportunities for industrial exploitation, including the synthesis of new chemical libraries that will support industrial and academic drug discovery programmes. More broadly, the programme will provide general tools, technology platforms and SynBio 'know-how' that will impact widely in sustainable manufacture of chemicals and natural products and de-risk SynBio approaches for more rapid take-up and development by the industrial sector.
推动化学品/天然产品生产走向“绿色”和更可持续的制造工艺将需要利用合成生物学 (SynBio) 的力量并与更传统的生物催化和化学催化工艺相结合。合成生物技术是一项潜在的颠覆性技术,但在化学品制造合成生物技术能够取代传统制造工艺之前,需要大幅降低风险。在某种程度上,这反映在与工业部门开发新制造工厂相关的主要成本上,这是从传统的石化/自然资源为基础的制造过渡到基于合成生物的化学品制造所需的。在这个计划中,我们将设计、构建和集成新的 SynBio 技术,加速交付用于化学品/天然产物合成的定制 SynBio 解决方案。我们的重点是一大类具有工业价值的化合物,即单萜类化合物,它为使用 SynBio 进行生物基生产提供了新的机会。通过采用模块化“即插即用”平台方法和包含“设计-构建-测试-部署”生命周期的生产管道,我们将把知识资产转化为单萜化合物的创新化学品生产解决方案。我们将招募和设计定制生物部件(例如酶催化剂、转运蛋白、膜组件),并以新颖的方式组装它们,以创建包含在合成工程微生物生物工厂内的生物基生产管道。迭代设计-构建-测试-部署生命周期将用于优化已定义的原理验证项目中单萜化学品的生产。利用这些示范项目,我们将为化学品/天然产物生物合成提供创新的合成生物方法,并促进领先能力的发展,从而刺激与行业和其他利益相关者的互动。这些项目将需要独特的多学科环境(包括生物科学、工程、化学和计算科学)以及以申请人团队为代表的协作工作文化。基于酶催化的 SynBio 合成具有吸引力:区域选择性和立体选择性生物转化、“绿色”反应条件的使用以及无有毒副产物的结合使生物合成在可持续制造中具有吸引力。美国和欧洲立法承认生物合成制造过程中的产品被视为“天然”。这增加了显着的市场价值,特别是在食品和调味品制造中,就像单萜类化合物的生产和使用的情况一样。我们开发的合成生物方法还将产生使用传统合成方法不易获得的新化学实体。这将为工业开发提供新的机会,包括合成新的化学库,以支持工业和学术药物发现计划。更广泛地说,该计划将提供通用工具、技术平台和合成生物“专有技术”,这些工具、技术平台和合成生物“专有技术”将广泛影响化学品和天然产品的可持续制造,并降低合成生物方法的风险,以便工业部门更快地采用和发展。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Teaching Enzyme Catalysis Using Interactive Molecular Dynamics in Virtual Reality
  • DOI:
    10.1021/acs.jchemed.9b00181
  • 发表时间:
    2019-11-01
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Bennie, Simon J.;Ranaghan, Kara E.;Glowacki, David R.
  • 通讯作者:
    Glowacki, David R.
Emergence of a Negative Activation Heat Capacity during Evolution of a Designed Enzyme
设计酶的进化过程中负活化热容的出现
  • DOI:
    10.5167/uzh-174733
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bunzel, H Adrian
  • 通讯作者:
    Bunzel, H Adrian
From Bugs to Bioplastics: Total (+)-Dihydrocarvide Biosynthesis by Engineered Escherichia coli.
L718Q mutant EGFR escapes covalent inhibition by stabilizing a non-reactive conformation of the lung cancer drug osimertinib.
  • DOI:
    10.1039/c7sc04761d
  • 发表时间:
    2018-03-14
  • 期刊:
  • 影响因子:
    8.4
  • 作者:
    Callegari D;Ranaghan KE;Woods CJ;Minari R;Tiseo M;Mor M;Mulholland AJ;Lodola A
  • 通讯作者:
    Lodola A
Exploration of the structural requirements of Aurora Kinase B inhibitors by a combined QSAR, modelling and molecular simulation approach.
  • DOI:
    10.1038/s41598-021-97368-3
  • 发表时间:
    2021-09-21
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Ashraf S;Ranaghan KE;Woods CJ;Mulholland AJ;Ul-Haq Z
  • 通讯作者:
    Ul-Haq Z
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nigel Scrutton其他文献

Nigel Scrutton的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Nigel Scrutton', 18)}}的其他基金

Generalised Photocatalysis by Enzymes (GENPENZ)
广义酶光催化 (GENPENZ)
  • 批准号:
    BB/X003027/1
  • 财政年份:
    2023
  • 资助金额:
    $ 387.23万
  • 项目类别:
    Research Grant
A nanosecond laser spectroscopy platform for studying light-activated biomolecules
用于研究光激活生物分子的纳秒激光光谱平台
  • 批准号:
    BB/T017473/1
  • 财政年份:
    2020
  • 资助金额:
    $ 387.23万
  • 项目类别:
    Research Grant
Tripping the light fantastic: elucidating global protein structural change correlated with chemical change across the femtosecond to second timescale
奇妙的奇妙之旅:阐明飞秒到秒时间尺度内与化学变化相关的整体蛋白质结构变化
  • 批准号:
    EP/S030336/1
  • 财政年份:
    2019
  • 资助金额:
    $ 387.23万
  • 项目类别:
    Research Grant
Future Biomanufacturing Research Hub
未来生物制造研究中心
  • 批准号:
    EP/S01778X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 387.23万
  • 项目类别:
    Research Grant
Newton Bhabha Industrial Waste: Integrated biorefinery for converting paper mill waste into chemical wealth (waste-2-wealth)
牛顿巴巴工业废物:将造纸厂废物转化为化学财富的综合生物精炼厂(废物-2-财富)
  • 批准号:
    BB/S011684/1
  • 财政年份:
    2018
  • 资助金额:
    $ 387.23万
  • 项目类别:
    Research Grant
A versatile proton transfer reaction-mass spectrometry platform for online monitoring of VOCs.
用于在线监测 VOC 的多功能质子转移反应质谱平台。
  • 批准号:
    BB/R013497/1
  • 财政年份:
    2018
  • 资助金额:
    $ 387.23万
  • 项目类别:
    Research Grant
Towards a Bio-based Manufacturing Platform for High Strength Aramid (Aromatic Polyamide) Synthetic Fibres Using Synthetic Biology
利用合成生物学构建高强度芳纶(芳香族聚酰胺)合成纤维的生物基制造平台
  • 批准号:
    EP/N025504/1
  • 财政年份:
    2016
  • 资助金额:
    $ 387.23万
  • 项目类别:
    Research Grant
Feasibility study to determine whether new generation catalytic antibodies can overcome existing limitations for future use in clinical settings.
可行性研究,以确定新一代催化抗体是否可以克服现有的限制,以便将来在临床环境中使用。
  • 批准号:
    BB/N012356/1
  • 财政年份:
    2016
  • 资助金额:
    $ 387.23万
  • 项目类别:
    Research Grant
Why does Nature use modular enzyme architectures for biological catalysis?
为什么 Nature 使用模块化酶结构进行生物催化?
  • 批准号:
    BB/N013980/1
  • 财政年份:
    2016
  • 资助金额:
    $ 387.23万
  • 项目类别:
    Research Grant
An analysis of the commercial potential of menthol production using synthetic biology approaches.
使用合成生物学方法分析薄荷醇生产的商业潜力。
  • 批准号:
    BB/N004868/1
  • 财政年份:
    2015
  • 资助金额:
    $ 387.23万
  • 项目类别:
    Research Grant

相似国自然基金

基于固定路线营运车辆动力响应的桥梁快速巡检与状态评估方法研究
  • 批准号:
    52378145
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
国家可持续议程创新示范区建设路径差异与发展路线图研究
  • 批准号:
    42301326
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于渔场不确定时空分布的远洋捕捞路线优化研究
  • 批准号:
    72301225
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
切换通信拓扑与不利道路线形耦合条件下多车队列系统协同控制
  • 批准号:
    62303134
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
气候变化对古丝绸之路交通路线变迁的影响研究
  • 批准号:
    42371172
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目

相似海外基金

CO2 Routes Across Europe (COREU)
穿越欧洲的二氧化碳路线 (COREU)
  • 批准号:
    10111502
  • 财政年份:
    2024
  • 资助金额:
    $ 387.23万
  • 项目类别:
    EU-Funded
CO2 ROUTES ACROSS EUROPE (COREU)
穿越欧洲的二氧化碳路线 (COREU)
  • 批准号:
    10110613
  • 财政年份:
    2024
  • 资助金额:
    $ 387.23万
  • 项目类别:
    EU-Funded
Evolutionary routes to phenotypic convergence in vertebrates
脊椎动物表型趋同的进化途径
  • 批准号:
    NE/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 387.23万
  • 项目类别:
    Research Grant
CAS: Solution Routes Towards Metastable Functional Chalcogenides
CAS:亚稳态功能硫属化物的解决方案
  • 批准号:
    2333388
  • 财政年份:
    2024
  • 资助金额:
    $ 387.23万
  • 项目类别:
    Standard Grant
Characterising Transport Routes in Dual-phase Molten-salt Membranes for Carbon Dioxide Separation
表征二氧化碳分离双相熔盐膜中的传输路径
  • 批准号:
    2875396
  • 财政年份:
    2023
  • 资助金额:
    $ 387.23万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了