Bacterial cell wall architecture
细菌细胞壁结构
基本信息
- 批准号:BB/L006162/1
- 负责人:
- 金额:$ 86.23万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2014
- 资助国家:英国
- 起止时间:2014 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The bacterial cell wall is essential for viability, shape determination and its production is the target of the most important types of antibiotics ever discovered (such as penicillin). The alarming spread of antibiotic resistance means it is crucial to understand more about this structure if we are to define new potential ways to control bacterial disease. The cell wall is like an exoskeleton (called the sacculus) that is able to withstand the considerable internal forces that would otherwise rupture the cell. The major structural element of the cell wall for most bacteria is a polymer called peptidoglycan (PG), which is unique to bacteria. PG is a single large, bag-like molecule that surrounds the cell and whilst very strong is also dynamic to allow the cells to grow and divide. Even though PG is chemically only made of relatively simple building blocks how these are assembled to produce an architecture able to fulfil the many functions of PG has remained largely elusive. The problem is that architecture has to be viewed in situ and bacteria are on the micron scale. To address this problem, in the last few years we have taken an interdisciplinary approach using a combination of biochemistry and high-resolution microscopy techniques. The new information gained has completely altered our views on PG architecture overturning previous models and revealing a hitherto unexpected complexity. We have now applied our approach to many different organisms and have discovered several different architectures from rings and knobbles in the human pathogen Staphylococcus aureus to cables in the rod shaped bacterium Bacillus subtilis and a heterogeneous architecture of pores and thicker regions in organisms such as Escherichia coli. In order to explain how such PG features allow the bacteria to maintaining cell integrity and yet be dynamic we have proposed new models for growth and division for several important bacterial species. To map sites of new PG synthesis we have a super-resolution fluorescence microscope and a totally new and unique machine capable of correlating different forms of microscopy. We are now ready to take the next step to actually solve the architecture of PG at the chemical level. This will give great insights into the fundamental biology of bacteria, how they are able to grow and divide and the action of important antibiotics. Amazingly, we know the target of penicillin but not how it kills bacteria. New understanding will require not only the development and use of ultra-resolution microscopy approaches, but also the synthesis of a suite of chemical probes such that we will be able to "see chemistry". Several of the proposed microscopy approaches have not been applied to biological samples before and so we will pave the way for their wider application.
细菌细胞壁对于生存能力,确定形状及其产生是有史以来最重要的抗生素类型(例如青霉素)的目标。抗生素耐药性的惊人传播意味着,如果我们要定义控制细菌疾病的新潜在方法,那么了解这种结构至关重要。细胞壁就像一个外骨骼(称为囊),能够承受否则会破裂细胞的大量内部力。大多数细菌的细胞壁的主要结构元素是一种称为肽聚糖(PG)的聚合物,它是细菌所特有的。 PG是一个单个大型袋状分子,围绕细胞,虽然非常强,但也具有动态性,可以使细胞生长和分裂。即使PG在化学上仅由相对简单的构件制成,它们如何组装它们以生成能够实现PG的许多功能的体系结构,这在很大程度上仍然难以捉摸。问题在于必须原位观察建筑,并且细菌处于微米尺度上。为了解决这个问题,在过去的几年中,我们使用生物化学和高分辨率显微镜技术的组合采取了跨学科的方法。获得的新信息完全改变了我们对PG体系结构推翻以前模型的看法,并揭示了迄今为止意外的复杂性。现在,我们已经将方法应用于许多不同的生物体,并发现了金黄色葡萄球菌中的环和旋钮的几种不同的建筑,到杆状细菌枯草杆菌的电缆以及诸如Escherichia Coli等生物体中的孔和厚区域的异质结构。为了解释这样的PG特征如何使细菌保持细胞完整性,但是动态的,我们提出了一些新的模型,用于几种重要的细菌物种的生长和分裂。为了绘制新PG合成的位点,我们具有超分辨率的荧光显微镜和一个全新的独特机器,能够将不同形式的显微镜相关联。现在,我们准备迈出下一步,实际解决PG在化学水平上的结构。这将为细菌的基本生物学,它们如何成长和分裂以及重要抗生素的作用提供深刻的见解。令人惊讶的是,我们知道青霉素的靶标,但不知道它如何杀死细菌。新的理解不仅需要开发和使用超分辨率显微镜方法,而且还需要一组化学探针的合成,以便我们能够“看化学”。以前,提出的几种显微镜方法尚未应用于生物样品,因此我们将为其更广泛的应用铺平道路。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
ELM: super-resolution analysis of wide-field images of fluorescent shell structures.
ELM:荧光壳结构的宽视场图像的超分辨率分析。
- DOI:10.1088/2050-6120/aac28e
- 发表时间:2018
- 期刊:
- 影响因子:3.2
- 作者:Manton JD
- 通讯作者:Manton JD
Molecular imaging of glycan chains couples cell-wall polysaccharide architecture to bacterial cell morphology.
- DOI:10.1038/s41467-018-03551-y
- 发表时间:2018-03-28
- 期刊:
- 影响因子:16.6
- 作者:Turner RD;Mesnage S;Hobbs JK;Foster SJ
- 通讯作者:Foster SJ
Molecular coordination of Staphylococcus aureus cell division.
- DOI:10.7554/elife.32057
- 发表时间:2018-02-21
- 期刊:
- 影响因子:7.7
- 作者:Lund VA;Wacnik K;Turner RD;Cotterell BE;Walther CG;Fenn SJ;Grein F;Wollman AJ;Leake MC;Olivier N;Cadby A;Mesnage S;Jones S;Foster SJ
- 通讯作者:Foster SJ
Bactericidal activity of the human skin fatty acid cis-6-hexadecanoic acid on Staphylococcus aureus.
- DOI:10.1128/aac.01043-13
- 发表时间:2014-07
- 期刊:
- 影响因子:4.9
- 作者:Cartron ML;England SR;Chiriac AI;Josten M;Turner R;Rauter Y;Hurd A;Sahl HG;Jones S;Foster SJ
- 通讯作者:Foster SJ
Staphylococcus aureus cell wall structure and dynamics during host-pathogen interaction.
- DOI:10.1371/journal.ppat.1009468
- 发表时间:2021-03
- 期刊:
- 影响因子:6.7
- 作者:Sutton JAF;Carnell OT;Lafage L;Gray J;Biboy J;Gibson JF;Pollitt EJG;Tazoll SC;Turnbull W;Hajdamowicz NH;Salamaga B;Pidwill GR;Condliffe AM;Renshaw SA;Vollmer W;Foster SJ
- 通讯作者:Foster SJ
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Simon J. Foster其他文献
PEPTIDOGLYCAN OF STAPHYLOCCUS AUREUS INDUCES ENHANCED LEVELS OF MATRIX METALLOPROTEINASE-9 IN HUMAN BLOOD ORIGINATING FROM NEUTROPHILS
金黄色葡萄球菌肽聚糖可提高源自中性粒细胞的人血中基质金属蛋白酶 9 的水平
- DOI:
10.1097/01.shk.0000174935.13786.6c - 发表时间:
2005 - 期刊:
- 影响因子:3.1
- 作者:
Y. Wang;A. Myhre;Solveig J Pettersen;M. Dahle;Simon J. Foster;C. Thiemermann;Kristin Bjørnland;Ansgar O. Aasen;Jacob E. Wang - 通讯作者:
Jacob E. Wang
The identification of Staphylococcus aureus factors required for pathogenicity and growth in 1 human blood . 2 3
鉴定1人血液中金黄色葡萄球菌致病性和生长所需的因子。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
John Connolly;E. Boldock;L. Prince;S. Renshaw;4. MoiraK;Whyte;Simon J. Foster - 通讯作者:
Simon J. Foster
Simon J. Foster的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Simon J. Foster', 18)}}的其他基金
The role of commensal organisms as pro-infectious agents in Staphylococcus aureus infection dynamics.
共生生物作为促感染剂在金黄色葡萄球菌感染动态中的作用。
- 批准号:
MR/R001111/1 - 财政年份:2018
- 资助金额:
$ 86.23万 - 项目类别:
Research Grant
Biomedical Catalyst – Staphylococcus aureus Vaccine
生物医学催化剂—金黄色葡萄球菌疫苗
- 批准号:
MC_PC_14090 - 财政年份:2013
- 资助金额:
$ 86.23万 - 项目类别:
Research Grant
Development of a vaccine against Staphylococcus aureus based on novel targets
基于新靶点开发金黄色葡萄球菌疫苗
- 批准号:
G1000768/1 - 财政年份:2011
- 资助金额:
$ 86.23万 - 项目类别:
Research Grant
Super-resolution fluorescence atomic force (SURFACE) microscopy
超分辨率荧光原子力(表面)显微镜
- 批准号:
BB/I023518/1 - 财政年份:2011
- 资助金额:
$ 86.23万 - 项目类别:
Research Grant
Bacterial cell wall architecture and dynamics
细菌细胞壁结构和动力学
- 批准号:
BB/H011005/1 - 财政年份:2010
- 资助金额:
$ 86.23万 - 项目类别:
Research Grant
UK-BaCWAN2: Continuation and Expansion of UK-Bacterial Cell Wall Assembly Network
UK-BaCWAN2:UK-细菌细胞壁组装网络的延续和扩展
- 批准号:
G0701400/1 - 财政年份:2008
- 资助金额:
$ 86.23万 - 项目类别:
Research Grant
Interaction of Staphylococcus aureus and humans: Iron regulated surface proteins and a novel host defence mechanism
金黄色葡萄球菌与人类的相互作用:铁调节的表面蛋白和新型宿主防御机制
- 批准号:
G0600801/1 - 财政年份:2007
- 资助金额:
$ 86.23万 - 项目类别:
Research Grant
Novel targets for vaccine development and immunotherapy to combat Staphylococcus aureus and other pathogens
对抗金黄色葡萄球菌和其他病原体的疫苗开发和免疫疗法的新目标
- 批准号:
BB/D525748/1 - 财政年份:2006
- 资助金额:
$ 86.23万 - 项目类别:
Research Grant
Analysis of peptidoglycan architecture in Gram positive bacteria
革兰氏阳性菌肽聚糖结构分析
- 批准号:
BB/D007534/1 - 财政年份:2006
- 资助金额:
$ 86.23万 - 项目类别:
Research Grant
相似国自然基金
GACAT2调控线粒体胞吐促炎症微环境中牙周膜干细胞成牙骨质分化的机制研究
- 批准号:82301079
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
TPLATE Complex通过胞吞调控CLV3-CLAVATA多肽信号模块维持干细胞稳态的分子机制研究
- 批准号:32370337
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
转移相关中性粒细胞(TMAN)代谢重塑促三阴性乳腺癌嗜肺转移的作用与分子机制
- 批准号:82372823
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
受幽门螺杆菌调控的circ0088431通过提高肿瘤干细胞特性促进胃癌细胞对奥沙利铂耐药的机制研究
- 批准号:82303602
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
导电水凝胶负载iPSC来源细胞及piR-1245工程化外泌体通过改善局部微环境促进心肌梗死重建的机制
- 批准号:82360067
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Reinforcing the battle at the bacterial cell wall: Structure-guided characterization and inhibition of beta-lactam antibiotic resistance signalling mechanisms
加强细菌细胞壁的战斗:β-内酰胺抗生素耐药信号机制的结构引导表征和抑制
- 批准号:
480022 - 财政年份:2023
- 资助金额:
$ 86.23万 - 项目类别:
Operating Grants
Investigating the Contribution of the Coxiella Cell Wall to Intracellular Pathogenesis
研究柯克斯体细胞壁对细胞内发病机制的贡献
- 批准号:
10593290 - 财政年份:2023
- 资助金额:
$ 86.23万 - 项目类别:
The role of intestinal gp130 in alcohol-associated liver disease
肠道 gp130 在酒精相关性肝病中的作用
- 批准号:
10742561 - 财政年份:2023
- 资助金额:
$ 86.23万 - 项目类别:
Probing and manipulating the bacterial cell wall using chemically modified sugars
使用化学修饰糖探测和操纵细菌细胞壁
- 批准号:
2885428 - 财政年份:2023
- 资助金额:
$ 86.23万 - 项目类别:
Studentship
Elucidating the spatiotemporal regulation of septal peptidoglycan synthases in E.coli
阐明大肠杆菌中隔膜肽聚糖合酶的时空调节
- 批准号:
10680050 - 财政年份:2023
- 资助金额:
$ 86.23万 - 项目类别: