US-UK Collab Linking models and policy: Using active adaptive management for optimal control of disease outbreaks.

美英合作链接模型和政策:使用主动适应性管理来最佳控制疾病爆发。

基本信息

  • 批准号:
    BB/K010972/1
  • 负责人:
  • 金额:
    $ 50.16万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

In the event of an outbreak of an infectious disease, management strategies to control further spread of infection are generally implemented based either upon strategies employed during previous epidemics or a pre-conceived expectation of the likelihood of success. However, at the onset of an outbreak, there is a great amount of uncertainty regarding the epidemiological properties of the disease and this may have a significant influence upon the ability of the chosen management strategy to contain or control the epidemic. Mathematical models can be developed to simulate spread of disease and evaluate the effectiveness of potential control strategies. However, the effectiveness of these models may be restricted by our limited knowledge of the epidemic as it unfolds.Extensive analyses of the 2001 Foot and Mouth (FMD) outbreak in the UK have provided valuable information about both the dynamics of disease spread and the implementation of management actions. However, those observations are specific both to the UK setting and to the strain of. A future outbreak in the UK or an outbreak in another country such as the US will not necessarily follow the same pattern. Thus, key aspects of disease spread, and the optimal response, cannot be resolved until an outbreak occurs. Adaptive management (AM) seeks to address this limitation by incorporating monitoring, evaluation, and response into management actions such that management strategies can be modified and updated in response to improved understanding of the outbreak dynamics. The AM framework has previously been applied in conservation management but is yet to be applied to the management of infectious diseases.AM provides a framework for switching from the early strategy that optimises the average outcome (when uncertainties are yet to be resolved), to the one that optimises the outcome for the specific model (or models) that best matches by the outbreak at hand. Additionally, active adaptive management seeks to make this switch as soon as possible, by initially using sub-optimal controls that allow the specific model to be identified as soon as possible. Thus, early management actions can be used to improve knowledge of the dynamics and more rapidly transition to the strategy that maximizes the global objective.Although we are interested in the general application of AM to a range of outbreak scenarios; in this project we will use the 2001 FMD epidemic as a detailed, well-defined example. Despite a decade of modelling efforts, key uncertainties concerning optimal control remain, AM will allow us to address these issues. In particular we propose to: 1. Use the observed surveillance from the 2001 outbreak to identify the optimal adaptive strategy and the economic benefit of that strategy relative to a static (fixed) strategy.2. Simulate the use of active AM to discriminate amongst competing models and selection of the optimal strategy. To that end we will consider the application of management strategies to facilitate learning and rapid updating of control policies.3. Use AM to determine optimal management strategies for other disease scenarios, helping to generate a more generic understanding.4. Using the FMD case-study developed in 1 and 2, we will support workshops that engage members of the US and UK policy community in the use of adaptive management for an outbreak. 5. Based on the understanding gained in the workshops, we will develop a US-based outbreak case-study that will be used as the subject of training workshops in the second half of the grant period. This case study would demonstrate the utility of AM in a scenario of extreme uncertainty.The outputs of this project would elucidate the ability of AM to provide efficient policy advice in the event of future unknown outbreaks of infectious disease. A single, flexible policy that is able to adapt to the observed outbreak would have massive implications in reducing the impact of future outbreaks.
在传染病爆发时,控制感染进一步传播的管理策略通常是根据以前流行病期间采用的策略或对成功可能性的预先设想来实施的。然而,在疫情爆发时,该疾病的流行病学特性存在很大的不确定性,这可能会对所选管理策略遏制或控制该流行病的能力产生重大影响。可以开发数学模型来模拟疾病传播并评估潜在控制策略的有效性。然而,这些模型的有效性可能会受到我们对流行病发展的有限了解的限制。对 2001 年英国口蹄疫 (FMD) 疫情的广泛分析提供了有关疾病传播动态和实施的宝贵信息的管理行动。然而,这些观察结果是针对英国环境和压力的。未来在英国爆发或在美国等其他国家爆发不一定会遵循相同的模式。因此,疾病传播的关键问题和最佳应对措施只有在疫情爆发后才能得到解决。适应性管理(AM)旨在通过将监测、评估和响应纳入管理行动来解决这一局限性,以便可以修改和更新管理策略,以更好地了解疫情动态。 AM框架之前已应用于保护管理,但尚未应用于传染病管理。AM提供了一个框架,用于从优化平均结果的早期策略(当不确定性尚未解决时)切换到一种优化与当前疫情最匹配的特定模型(或多个模型)结果的模型。此外,主动自适应管理力求通过最初使用次优控制来尽快实现这种转变,从而尽快识别特定模型。因此,早期管理行动可用于提高对动态的了解,并更快地过渡到最大化全球目标的策略。尽管我们对 AM 在一系列爆发场景中的一般应用感兴趣;在这个项目中,我们将使用 2001 年的口蹄疫流行作为一个详细、明确的例子。尽管进行了十年的建模工作,但关于最优控制的关键不确定性仍然存在,增材制造将使我们能够解决这些问题。我们特别建议: 1. 使用 2001 年疫情爆发期间观察到的监测来确定最佳适应性策略以及该策略相对于静态(固定)策略的经济效益。2.模拟使用主动 AM 来区分竞争模型并选择最佳策略。为此,我们将考虑应用管理策略来促进控制政策的学习和快速更新。3.使用 AM 确定其他疾病情况的最佳管理策略,有助于形成更通用的理解。4。利用 1 和 2 中开发的 FMD 案例研究,我们将支持研讨会,让美国和英国政策界的成员参与针对疫情的适应性管理。 5. 根据研讨会上获得的理解,我们将开展一项美国疫情案例研究,作为资助期后半期培训研讨会的主题。该案例研究将证明 AM 在极端不确定的情况下的实用性。该项目的输出将阐明 AM 在未来未知的传染病爆发时提供有效政策建议的能力。能够适应观察到的疫情的单一、灵活的政策将对减少未来疫情的影响产生巨大影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Michael Tildesley其他文献

Michael Tildesley的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Michael Tildesley', 18)}}的其他基金

21-EEID US-UK Collab: Long-Distance Dispersal and Disease Spread Under Increased Ecological Complexity
21-EEID 美英合作:生态复杂性增加下的长距离传播和疾病传播
  • 批准号:
    BB/X005224/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50.16万
  • 项目类别:
    Research Grant
Exploring Risk Factors for Sequential and Concurrent Dengue and Zika Outbreaks in a Naïve Population
探索未接触过登革热和寨卡病毒的人群中连续和同时爆发的风险因素
  • 批准号:
    NE/T014687/1
  • 财政年份:
    2020
  • 资助金额:
    $ 50.16万
  • 项目类别:
    Research Grant
Mathematical modeling and adaptive control to inform real time decision making for the COVID-19 pandemic at the local, regional and national scale
数学建模和自适应控制为地方、区域和国家范围内的 COVID-19 大流行的实时决策提供信息
  • 批准号:
    MR/V009761/1
  • 财政年份:
    2020
  • 资助金额:
    $ 50.16万
  • 项目类别:
    Research Grant
US-UK Collab: Adaptive surveillance and control for the elimination of endemic disease
美英合作:消除地方病的适应性监测和控制
  • 批准号:
    BB/T004312/1
  • 财政年份:
    2019
  • 资助金额:
    $ 50.16万
  • 项目类别:
    Research Grant
Investigating the impact of farmer behaviour and farmer-led control of infectious disease outbreaks in livestock
调查农民行为和农民主导的牲畜传染病爆发控制的影响
  • 批准号:
    BB/S01750X/1
  • 财政年份:
    2019
  • 资助金额:
    $ 50.16万
  • 项目类别:
    Research Grant
US-UK Collab Linking models and policy: Using active adaptive management for optimal control of disease outbreaks.
美英合作链接模型和政策:使用主动适应性管理来最佳控制疾病爆发。
  • 批准号:
    BB/K010972/4
  • 财政年份:
    2016
  • 资助金额:
    $ 50.16万
  • 项目类别:
    Research Grant
US-UK Collab Linking models and policy: Using active adaptive management for optimal control of disease outbreaks.
美英合作链接模型和政策:使用主动适应性管理来最佳控制疾病爆发。
  • 批准号:
    BB/K010972/3
  • 财政年份:
    2014
  • 资助金额:
    $ 50.16万
  • 项目类别:
    Research Grant
US-UK Collab Linking models and policy: Using active adaptive management for optimal control of disease outbreaks.
美英合作链接模型和政策:使用主动适应性管理来最佳控制疾病爆发。
  • 批准号:
    BB/K010972/2
  • 财政年份:
    2013
  • 资助金额:
    $ 50.16万
  • 项目类别:
    Research Grant

相似国自然基金

CREKA/rhPro-UK靶向载药微泡在腔内超声场下对静脉血栓的除栓作用及机理研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
中国长白山与英国雪墩山地区泥炭地土壤酶化学计量比的生物调控机制
  • 批准号:
    42111530125
  • 批准年份:
    2021
  • 资助金额:
    9.8 万元
  • 项目类别:
    国际(地区)合作与交流项目
EEID:US-UK-China: 新发禽流感病毒的演进与生态传播动力学的前瞻性研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    450 万元
  • 项目类别:
中国长白山与英国雪墩山地区泥炭地土壤酶化学计量比的生物调控机制
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    万元
  • 项目类别:
    国际(地区)合作与交流项目
中国和英国的废塑料的物质流分析
  • 批准号:
    72011530196
  • 批准年份:
    2020
  • 资助金额:
    9.6 万元
  • 项目类别:
    国际(地区)合作与交流项目

相似海外基金

21-EEID US-UK Collab: Multi-scale infection dynamics from cells to landscapes: foot-and-mouth disease viruses in African buffalo
21-EEID 美英合作:从细胞到景观的多尺度感染动态:非洲水牛的口蹄疫病毒
  • 批准号:
    BB/X006085/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50.16万
  • 项目类别:
    Research Grant
US-UK Collab: Integrating metaviromics with epidemiological dynamics: understanding virus transmission in the Anthropocene
美英合作:将元病毒组学与流行病学动态相结合:了解人类世的病毒传播
  • 批准号:
    2308273
  • 财政年份:
    2023
  • 资助金额:
    $ 50.16万
  • 项目类别:
    Continuing Grant
US-UK Collab: Resurrecting a role for roguing: Presymptomatic detection with multispectral imaging to quantify and control the transmission of cassava brown streak disease
美英合作:恢复欺诈行为:利用多光谱成像进行症状前检测,以量化和控制木薯褐条病的传播
  • 批准号:
    2308503
  • 财政年份:
    2023
  • 资助金额:
    $ 50.16万
  • 项目类别:
    Standard Grant
21-EEID US-UK Collab: Long-Distance Dispersal and Disease Spread Under Increased Ecological Complexity
21-EEID 美英合作:生态复杂性增加下的长距离传播和疾病传播
  • 批准号:
    BB/X005224/1
  • 财政年份:
    2023
  • 资助金额:
    $ 50.16万
  • 项目类别:
    Research Grant
US:UK Collab: Multi-scale infection dynamics from cells to landscapes: FMD in African buffalo
美国:英国合作:从细胞到景观的多尺度感染动态:非洲水牛的口蹄疫
  • 批准号:
    2208087
  • 财政年份:
    2022
  • 资助金额:
    $ 50.16万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了