Survival and dissemination of enteric pathogens through activation and subsequent inhibition of programmed cell death pathways

通过激活和随后抑制程序性细胞死亡途径来维持和传播肠道病原体

基本信息

  • 批准号:
    BB/K008005/1
  • 负责人:
  • 金额:
    $ 55.38万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2013
  • 资助国家:
    英国
  • 起止时间:
    2013 至 无数据
  • 项目状态:
    已结题

项目摘要

After being ingested on infected food pathogenic bacteria are taken up by cells in the intestine, entering the cells and attempting to grow. An infected cell recognizing the danger undergoes a tightly controlled form of cell suicide known as apoptosis. Thus the cell removes itself and the danger whilst simultaneously sending out warning signals to the immune system. E. coli and Salmonella are two of the most common food poisoning associated pathogens in the U.K. Based on our knowledge of the body's response to infection we would expect cells to undergo apoptosis when they come into contact with E. coli and Salmonella. In the case of these pathogens however the infected cells survive for some time following infection allowing the bacteria to grow within the infected cell. This extra time for growth is crucial, allowing these pathogens time to multiply and cause a more serious prolonged infection. Through this proposal we aim to understand how these pathogens are prolonging the life of infected cells. This work will have relevance for numerous bacterial pathogens, many of which we now know also attempt to interfere with this process of apoptosis during infection. Our previous work has shed new light on the complex interactions occurring in Salmonella infected cells. During infection the bacteria deliberately target proteins in the cell that respond to the infection by inducing cell suicide. In particular one extremely potent host cell enzyme called caspase-3, or the 'executioner caspase' is targeted. This is the key enzyme in inducing cell suicide, killing the cell quickly but in a controlled fashion. Due to the destructive power of caspase-3 its activation is tightly regulated, making its targeting by bacterial pathogens all the more surprising. However instead of trying to prevent caspase-3 from working these bacteria initially try to harness its activity bypassing the stringent controls put in place to ensure caspase-3 activity is kept in check. We now know Salmonella infection is activating caspase-3 by a unique mechanism and understanding and exploiting this is a key objective for this proposal. Activation of an enzyme as destructive as caspase-3 is a risky strategy for a pathogen that only has a limited time to try to grow within an infected cell. Salmonella and E. coli however have developed a mechanism to control the destructive power of the enzyme. Host cells have a natural recycling system called the proteasome that is used to take old or damaged proteins and break them down and use the building blocks to form new proteins. These bacterial pathogens tap into this recycling system, using their own proteins to mimic proteins from the cell that sort host proteins for recycling. Using this tactic the bacteria divert caspase-3 from its normal role, causing the host cell to inadvertently send it for recycling. This delays cell death meaning the bacteria can now multiply within the cell. This tactic we believe is replicated by numerous other bacterial pathogens during infection, meaning this proposal will have repercussions for the study of numerous microbial infections.
在被感染的食物致病细菌摄入后,被肠中的细胞吸收,进入细胞并试图生长。识别危险的感染细胞经历了一种被称为凋亡的细胞自杀形式。因此,该细胞消除了自身和危险,同时向免疫系统发出警告信号。大肠杆菌和沙门氏菌是英国最常见的食物中毒相关病原体中的两种。根据我们对人体对感染的反应的了解,我们期望细胞与大肠杆菌和沙门氏菌接触时会凋亡。但是,在这些病原体的情况下,感染的细胞在感染后存活了一段时间,从而使细菌在感染细胞内生长。这种额外的生长时间至关重要,使这些病原体的时间繁殖并引起更严重的长时间感染。通过这项建议,我们旨在了解这些病原体如何延长感染细胞的寿命。这项工作将与众多细菌病原体具有相关性,我们现在知道其中许多病原体也试图干扰感染过程中的凋亡过程。我们以前的工作为沙门氏菌感染细胞发生的复杂相互作用提供了新的启示。在感染期间,细菌故意靶向细胞中通过诱导细胞自杀反应感染的蛋白质。特别是一种称为caspase-3的极有效的宿主细胞酶,或“ execution子caspase”的目标。这是诱导细胞自杀的关键酶,迅速杀死细胞,但以受控的方式杀死了细胞。由于caspase-3的破坏力,其激活受到严格的调节,这使细菌病原体的靶向更加令人惊讶。但是,与其试图防止Caspase-3起作用,这些细菌最初试图利用其活性,绕过对位置的严格控制,以确保caspase-3活动被检查。我们现在知道沙门氏菌感染正在通过独特的机制激活caspase-3,理解和利用这是该提案的关键目标。对于caspase-3的破坏性酶的激活是一种风险策略,对于病原体而言,该病原体只有有限的时间尝试在感染细胞内生长。然而,沙门氏菌和大肠杆菌开发了一种控制酶破坏力的机制。宿主细胞具有称为蛋白酶体的天然回收系统,该系统用于服用旧或受损的蛋白质,并将其分解并使用构件形成新蛋白质。这些细菌病原体利用自己的蛋白质来模仿细胞中的蛋白质,从而将宿主蛋白质进行回收。使用这种策略,细菌将caspase-3从其正常作用中转移出来,导致宿主细胞无意中发送其回收。这会延迟细胞死亡,这意味着细菌现在可以在细胞内繁殖。我们认为,这种策略在感染过程中被许多其他细菌病原体复制,这意味着该提案将对许多微生物感染产生影响。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Increased S-nitrosylation and proteasomal degradation of caspase-3 during infection contribute to the persistence of adherent invasive Escherichia coli (AIEC) in immune cells.
  • DOI:
    10.1371/journal.pone.0068386
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Dunne KA;Allam A;McIntosh A;Houston SA;Cerovic V;Goodyear CS;Roe AJ;Beatson SA;Milling SW;Walker D;Wall DM
  • 通讯作者:
    Wall DM
Increasing the bactofection capacity of a mammalian expression vector by removal of the f1 ori.
  • DOI:
    10.1038/s41417-018-0039-9
  • 发表时间:
    2019-07
  • 期刊:
  • 影响因子:
    6.4
  • 作者:
    Johnson SA;Ormsby MJ;McIntosh A;Tait SWG;Blyth K;Wall DM
  • 通讯作者:
    Wall DM
Mapping the Influence of the Gut Microbiota on Small Molecules across the Microbiome Gut Brain Axis.
  • DOI:
    10.1021/jasms.1c00298
  • 发表时间:
    2022-04-06
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    Hulme, Heather;Meikle, Lynsey M.;Strittmatter, Nicole;Swales, John;Hamm, Gregory;Brown, Sheila L.;Milling, Simon;MacDonald, Andrew S.;Goodwin, Richard J. A.;Burchmore, Richard;Wall, Daniel M.
  • 通讯作者:
    Wall, Daniel M.
SipA Activation of Caspase-3 Is a Decisive Mediator of Host Cell Survival at Early Stages of Salmonella enterica Serovar Typhimurium Infection.
SipA 激活 Caspase-3 是肠沙门氏菌鼠伤寒血清型感染早期宿主细胞存活的决定性介质。
  • DOI:
    10.1128/iai.00393-17
  • 发表时间:
    2017-09
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    McIntosh A;Meikle LM;Ormsby MJ;McCormick BA;Christie JM;Brewer JM;Roberts M;Wall DM
  • 通讯作者:
    Wall DM
Monocytes mediate Salmonella Typhimurium-induced tumor growth inhibition in a mouse melanoma model.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Daniel Wall其他文献

Continuous-Flow Photochemical Transformations of 1,4-Naphthoquinones and Phthalimides in a Concentrating Solar Trough Reactor
1,4-萘醌和邻苯二甲酰亚胺在聚光槽式反应器中的连续流光化学转化
  • DOI:
    10.1071/ch20138
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    1.1
  • 作者:
    M. Yaseen;Saira Mumtaz;Richard Hunter;Daniel Wall;M. Robertson;M. Oelgemöller
  • 通讯作者:
    M. Oelgemöller
Alignment enhances the cell-to-cell transfer of pilus phenotype.
对齐增强了菌毛表型的细胞间转移。
The More You Ask, the Less You Get: When Additional Questions Hurt External Validity
你问得越多,得到的就越少:当额外的问题损害外部有效性时
  • DOI:
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ye Li;Antonia Krefeld;Daniel Wall;Eric J. Johnson;Olivier Toubia;Daniel M. Bartels
  • 通讯作者:
    Daniel M. Bartels

Daniel Wall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Daniel Wall', 18)}}的其他基金

Lachnospiraceae in the gut microbiome and their role in disease
肠道微生物组中的毛螺菌科及其在疾病中的作用
  • 批准号:
    BB/V001876/1
  • 财政年份:
    2021
  • 资助金额:
    $ 55.38万
  • 项目类别:
    Research Grant
Building Capacity in Linguistics, STEM and Technology through the Documentation of the North Slope Dialect of Inupiaq, an endangered Native Alaskan language
通过记录因努皮亚克语(一种濒临灭绝的阿拉斯加原住民语言)的北坡方言,建设语言学、STEM 和技术方面的能力
  • 批准号:
    1563665
  • 财政年份:
    2016
  • 资助金额:
    $ 55.38万
  • 项目类别:
    Standard Grant
Propionic acid use in agriculture and food production is driving evolution of novel Escherichia coli pathotypes
丙酸在农业和食品生产中的使用正在推动新型大肠杆菌致病型的进化
  • 批准号:
    BB/P003281/1
  • 财政年份:
    2016
  • 资助金额:
    $ 55.38万
  • 项目类别:
    Research Grant
Cell-to-Cell Transfer of Bacterial Lipoproteins
细菌脂蛋白的细胞间转移
  • 批准号:
    0848141
  • 财政年份:
    2009
  • 资助金额:
    $ 55.38万
  • 项目类别:
    Continuing Grant

相似国自然基金

新疆猪源optrA/poxtA阳性肠球菌的分子流行病学调查及粪菌移植对其在肠道中传播的影响
  • 批准号:
    32360910
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
少突胶质细胞介导阑尾源性α-突触核蛋白传播在肠源性帕金森病发病中的作用及机制研究
  • 批准号:
    82371264
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
ICU内耐碳青霉烯类肠杆菌科细菌无症状定植的传播作用、隐形播散机制和防控策略研究
  • 批准号:
    82202572
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
多黏菌素耐药基因mcr-9在阴沟肠杆菌复合群中的流行传播及作用机制研究
  • 批准号:
    82272392
  • 批准年份:
    2022
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
ICU内耐碳青霉烯类肠杆菌科细菌无症状定植的传播作用、隐形播散机制和防控策略研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Leadership Group for the Infectious Diseases Clinical Research Consortium (IDCRCLG) - COVAIL DMID #22-0004
传染病临床研究联盟领导小组 (IDCRCLG) - COVAIL DMID
  • 批准号:
    10615472
  • 财政年份:
    2022
  • 资助金额:
    $ 55.38万
  • 项目类别:
Leadership Group for the Infectious Diseases Clinical Research Consortium (IDCRCLG)
传染病临床研究联盟领导小组 (IDCRCLG)
  • 批准号:
    10462071
  • 财政年份:
    2021
  • 资助金额:
    $ 55.38万
  • 项目类别:
Leadership Group for the Infectious Diseases Clinical Research Consortium (IDCRCLG)
传染病临床研究联盟领导小组 (IDCRCLG)
  • 批准号:
    10462061
  • 财政年份:
    2021
  • 资助金额:
    $ 55.38万
  • 项目类别:
Leadership Group for the Infectious Diseases Clinical Research Consortium (IDCRCLG) - Momi-Vax DMID #21-0004 {Supplement #6}
传染病临床研究联盟领导小组 (IDCRCLG) - Momi-Vax DMID
  • 批准号:
    10428189
  • 财政年份:
    2021
  • 资助金额:
    $ 55.38万
  • 项目类别:
Dissemination of intracellular and extracellular Listeria from the gut
细胞内和细胞外李斯特菌从肠道的传播
  • 批准号:
    10306092
  • 财政年份:
    2021
  • 资助金额:
    $ 55.38万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了