Development of plant-based hydrogen peroxide YFP nanosensors targeted to multiple sub-cellular locations
开发针对多个亚细胞位置的基于植物的过氧化氢 YFP 纳米传感器
基本信息
- 批准号:BB/I020004/1
- 负责人:
- 金额:$ 25.27万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The oxygen (O2) we breathe is produced by plants when they photosynthesise. However, for cells that produce and/or consume O2 (by respiration) as a key part of their metabolism, there is an inherent danger and that is the production of reactive oxygen species (ROS). ROS arise as an inevitable consequence of O2 chemistry and if they accumulate, they cause oxidative damage to cell components (in particular chloroplasts and mitochondria) and can trigger the death of the cell. This is why plants make antioxidants, to limit the accumulation of ROS. One ROS, hydrogen peroxide (H2O2), is relatively stable while still being a powerful oxidant. H2O2 is used as a bleaching agent because of its powerful oxidising activity. H2O2 is made in plants as a bi-product of photosynthesis, respiration and many other chemical reactions that plant cells carry out. If it accumulates then, as with other ROS, it will cause oxidative damage. Evolution, though, has a habit of turning the potentially damaging into something useful. This is the case for H2O2. The accumulation of H2O2 in different parts of cells, before it attains damaging levels, acts to alter the expression of hundreds of genes by stimulating cellular signalling systems. H2O2 is an important cellular signalling molecule in bacteria, animal cells and especially plant cells. H2O2 stimulates cell signalling both internally and from cell-to-cell in response to many changes in the plant's environment, such as changes in light levels, wounding by herbivores and attack by pathogens. H2O2 is also used to regulate growth and development in plants, such as the development of secondary roots, the growth of pollen tubes and the hardening of cell walls. The intimate involvement of H2O2 in many aspects of plants' lives means it is imperative that we are able to locate and determine the changes in the level of H2O2 in different parts of the plant from the tissue down to the sub-cellular level. Until very recently this has not been possible. Knowing where, when and how much H2O2 accumulates is important in understanding if a plant is suffering oxidative damage or is actively signalling. The lack of technology for measuring H2O2 in real time, non-invasively and accurately means there are serious gaps in our understanding of how plants grow, reproduce and interact with their environment. Our aim is to provide the plant science community with means to locate and measure H2O2 at different sub-cellular locations in plant cells in real time. We can do this because a novel technology has been developed in which H2O2 can be specifically detected in cells using a genetically encoded protein sensor called HyPer. HyPer is a novel artificial protein which consists of a part (called a domain) of a bacterial protein called OxyR which changes shape when it specifically binds H2O2 .This OxyR domain is linked to a greatly modified fluorescent protein from a jellyfish, which changes its fluorescence characteristics in response to the change in shape of the OxyR domain. This fluorescence change, in response to H2O2, can be visualised by one of several types of microscope which allows the researcher to locate and measure changes in H2O2 concentration over time. HyPer has been shown to work in animal cells, bacteria and fish embryos. We have shown that HyPer works in exactly the same way in cells of roots and leaves of young seedlings. We aim to construct HyPer variants that will go to different locations in the cell so that researchers can build up a comprehensive picture of H2O2 accumulation in different tissues and conditions. However, HyPer expression is silent in older plants, which is common with other types of fluorescent sensors in plants. We have provided a number of solutions to this problem which will be deployed in this project to allow maximum and rapid uptake of this technology by the global plant science community, advancing knowledge of plant functions on a wide front.
我们呼吸的氧气 (O2) 是植物进行光合作用时产生的。然而,对于产生和/或消耗 O2(通过呼吸)作为其代谢关键部分的细胞来说,存在一个固有的危险,那就是活性氧 (ROS) 的产生。 ROS 是 O2 化学反应不可避免的结果,如果它们积累,就会对细胞成分(特别是叶绿体和线粒体)造成氧化损伤,并可能引发细胞死亡。这就是植物产生抗氧化剂来限制活性氧积累的原因。一种活性氧,即过氧化氢 (H2O2),相对稳定,同时仍然是一种强大的氧化剂。 H2O2 由于其强大的氧化活性而被用作漂白剂。 H2O2 是植物中产生的,是植物细胞进行光合作用、呼吸作用和许多其他化学反应的副产品。如果它积累起来,就像其他活性氧一样,就会造成氧化损伤。然而,进化有一个习惯,就是把潜在的破坏性的东西变成有用的东西。 H2O2 就是这种情况。 H2O2 在细胞不同部位积累,在达到破坏性水平之前,会通过刺激细胞信号系统来改变数百个基因的表达。 H2O2 是细菌、动物细胞尤其是植物细胞中重要的细胞信号分子。 H2O2 刺激细胞内部和细胞间的信号传导,以响应植物环境的许多变化,例如光照水平的变化、食草动物的伤害和病原体的攻击。 H2O2还用于调节植物的生长和发育,例如次生根的发育、花粉管的生长和细胞壁的硬化。 H2O2 与植物生命的许多方面密切相关,这意味着我们必须能够定位并确定植物不同部位(从组织到亚细胞水平)H2O2 水平的变化。直到最近,这还是不可能的。了解 H2O2 积累的地点、时间和数量对于了解植物是否正在遭受氧化损伤或正在积极发出信号非常重要。缺乏实时、非侵入性且准确测量 H2O2 的技术意味着我们对植物如何生长、繁殖以及与环境相互作用的理解存在严重差距。我们的目标是为植物科学界提供实时定位和测量植物细胞中不同亚细胞位置的 H2O2 的方法。我们之所以能够做到这一点,是因为我们已经开发出一种新技术,可以使用一种名为 HyPer 的基因编码蛋白质传感器来特异性检测细胞中的 H2O2。 HyPer 是一种新型人工蛋白,由一种名为 OxyR 的细菌蛋白的一部分(称为结构域)组成,当它特异性结合 H2O2 时,该蛋白会改变形状。该 OxyR 结构域与来自水母的经过大幅修改的荧光蛋白相连,该蛋白会改变其荧光响应 OxyR 结构域形状变化的特征。这种响应 H2O2 的荧光变化可以通过几种类型的显微镜之一进行可视化,从而使研究人员能够定位和测量 H2O2 浓度随时间的变化。 HyPer 已被证明可以在动物细胞、细菌和鱼类胚胎中发挥作用。我们已经证明,HyPer 在幼苗的根和叶细胞中以完全相同的方式发挥作用。我们的目标是构建能够到达细胞不同位置的 HyPer 变体,以便研究人员能够全面了解不同组织和条件下 H2O2 积累的情况。然而,HyPer 表达在较老的植物中是沉默的,这在植物中其他类型的荧光传感器中很常见。我们针对这个问题提供了许多解决方案,这些解决方案将在该项目中部署,以便全球植物科学界最大限度地、快速地采用这项技术,从而在更广泛的领域推进对植物功能的了解。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hydrogen Peroxide and Cell Signaling: Part B
过氧化氢和细胞信号传导:B 部分
- DOI:
- 发表时间:2013
- 期刊:
- 影响因子:0
- 作者:Packer, Lester;Cadenas, Enrique
- 通讯作者:Cadenas, Enrique
Making open data work for plant scientists.
- DOI:10.1093/jxb/ert273
- 发表时间:2013-11
- 期刊:
- 影响因子:6.9
- 作者:Leonelli S;Smirnoff N;Moore J;Cook C;Bastow R
- 通讯作者:Bastow R
An update: improvements in imaging perfluorocarbon-mounted plant leaves with implications for studies of plant pathology, physiology, development and cell biology.
- DOI:10.3389/fpls.2014.00140
- 发表时间:2014
- 期刊:
- 影响因子:5.6
- 作者:Littlejohn GR;Mansfield JC;Christmas JT;Witterick E;Fricker MD;Grant MR;Smirnoff N;Everson RM;Moger J;Love J
- 通讯作者:Love J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Nicholas Smirnoff其他文献
Ascorbate Responsive Genes in Arabidopsis thaliana.
拟南芥中的抗坏血酸响应基因。
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
Yongshun Gao;Yoshihiro Sawa;Tsuyoshi Nakagawa;Nicholas Smirnoff;Shigeru Shigeoka;Takahiro Ishikawa - 通讯作者:
Takahiro Ishikawa
シロイヌナズナにおけるアスコルビン酸応答遺伝子の探索
在拟南芥中寻找抗坏血酸反应基因
- DOI:
- 发表时间:
2010 - 期刊:
- 影响因子:0
- 作者:
高用順;澤嘉弘;柴田均;中川強;Nicholas Smirnoff;重岡成;石川孝博 - 通讯作者:
石川孝博
シロイヌナズナ葉におけるアスコルビン酸蓄積の光制御には光合成によるVTC2遺伝子発現が影響する
拟南芥叶片中抗坏血酸积累的光调节受光合VTC2基因表达的影响
- DOI:
- 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
石川孝博;丸田隆典;小川貴央;重岡 成;Mike Page ;Nicholas Smirnoff - 通讯作者:
Nicholas Smirnoff
The biosynthesis of erythroascorbate in Saccharomyces cerevisiae and its role as an antioxidant.
酿酒酵母中赤式抗坏血酸的生物合成及其作为抗氧化剂的作用。
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:7.4
- 作者:
C. Spickett;Nicholas Smirnoff;A. Pitt - 通讯作者:
A. Pitt
The control of ascorbic acid synthesis and turnover in pea seedlings.
豌豆幼苗抗坏血酸合成和周转的控制。
- DOI:
- 发表时间:
2000 - 期刊:
- 影响因子:6.9
- 作者:
J. Pallanca;Nicholas Smirnoff - 通讯作者:
Nicholas Smirnoff
Nicholas Smirnoff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Nicholas Smirnoff', 18)}}的其他基金
Finessing, Extending and Developing an Overview of the Regulation of Ascorbate in plants (FEDORA)
精炼、扩展和发展植物中抗坏血酸的调控概述 (FEDORA)
- 批准号:
BB/W006553/1 - 财政年份:2022
- 资助金额:
$ 25.27万 - 项目类别:
Research Grant
Elucidating the role of ROS in mediating self-incompatibility induced PCD
阐明 ROS 在介导自交不亲和性诱导的 PCD 中的作用
- 批准号:
BB/T005424/1 - 财政年份:2020
- 资助金额:
$ 25.27万 - 项目类别:
Research Grant
Understanding the mechanism of chloroplast immunity.
了解叶绿体免疫机制。
- 批准号:
BB/P002366/1 - 财政年份:2017
- 资助金额:
$ 25.27万 - 项目类别:
Research Grant
The control of specificity in guard cell ROS-based signalling
基于 ROS 的保卫细胞信号传导的特异性控制
- 批准号:
BB/N001311/1 - 财政年份:2016
- 资助金额:
$ 25.27万 - 项目类别:
Research Grant
14-PSIL Multiple Approaches to Gain Increased Carbon Dioxide
14-PSIL 增加二氧化碳含量的多种方法
- 批准号:
BB/M011429/1 - 财政年份:2014
- 资助金额:
$ 25.27万 - 项目类别:
Research Grant
Harnessing synthetic biology to improve photosynthesis: preparation of joint grant proposal for BBSRC-NSF photosynthesis initiative
利用合成生物学改善光合作用:为 BBSRC-NSF 光合作用计划准备联合拨款提案
- 批准号:
BB/L00545X/1 - 财政年份:2013
- 资助金额:
$ 25.27万 - 项目类别:
Research Grant
Decreasing the oxygenase activity of Rubisco: a synthetic biology approach
降低 Rubisco 的加氧酶活性:一种合成生物学方法
- 批准号:
BB/J004057/1 - 财政年份:2012
- 资助金额:
$ 25.27万 - 项目类别:
Research Grant
The control of ascorbate biosynthesis: the role of light and GDP-L-galactose phosphorylase
抗坏血酸生物合成的控制:光和 GDP-L-半乳糖磷酸化酶的作用
- 批准号:
BB/G021678/1 - 财政年份:2009
- 资助金额:
$ 25.27万 - 项目类别:
Research Grant
Liquid chromatography-mass spectroscopy (LC-MS) equipment for plant metabolism and host-pathogen interactions.
用于植物代谢和宿主-病原体相互作用的液相色谱-质谱 (LC-MS) 设备。
- 批准号:
BB/F011652/1 - 财政年份:2008
- 资助金额:
$ 25.27万 - 项目类别:
Research Grant
相似国自然基金
基于植物酚类生态友好型功能材料的蓝藻水华全生命周期防控与治理机制研究
- 批准号:52370164
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于宏基因组和代谢组解析沙芥属植物土壤自毒物质累积致害机制
- 批准号:32360742
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于新框架土壤生物促进或抑制外来植物入侵发生条件和机制研究
- 批准号:32371749
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于植物-微生物互作的合成菌群涌现性功能产生机制研究
- 批准号:32370127
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于芥子碱-蛋白质互作植物基凝胶油的构建及其抗热氧化性能研究
- 批准号:32302006
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Aerobiome based genomic surveillance of fungicide resistance to track the development and spread of AMR in plant pathogens and the wider environment
基于空气生物组的杀菌剂抗性基因组监测,以追踪植物病原体和更广泛环境中 AMR 的发展和传播
- 批准号:
MR/Y034023/1 - 财政年份:2024
- 资助金额:
$ 25.27万 - 项目类别:
Research Grant
Toward synthetic chemically defined mRNA for human therapeutics
用于人类治疗的合成化学定义的 mRNA
- 批准号:
10649299 - 财政年份:2023
- 资助金额:
$ 25.27万 - 项目类别:
Development of novel Penicillium strains optimised for mould-ripened plant-based cheese manufacturing
开发针对霉菌成熟植物奶酪生产优化的新型青霉菌菌株
- 批准号:
10061661 - 财政年份:2023
- 资助金额:
$ 25.27万 - 项目类别:
Collaborative R&D
Development of recyclable, sustainable and functionalised packaging materials using plant-based technology to replace plastic
使用植物技术替代塑料,开发可回收、可持续和功能化的包装材料
- 批准号:
10078567 - 财政年份:2023
- 资助金额:
$ 25.27万 - 项目类别:
Collaborative R&D
Proteomic and epigenetic alterations associated with plant-based diets and CVD
与植物性饮食和心血管疾病相关的蛋白质组学和表观遗传改变
- 批准号:
10900009 - 财政年份:2023
- 资助金额:
$ 25.27万 - 项目类别: