Post-translational regulation of cell physiology by the circadian clock

生物钟对细胞生理学的翻译后调节

基本信息

  • 批准号:
    BB/I005811/1
  • 负责人:
  • 金额:
    $ 53.86万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2011
  • 资助国家:
    英国
  • 起止时间:
    2011 至 无数据
  • 项目状态:
    已结题

项目摘要

Plant cells contain a biological clock that is fundamental to plant growth and survival. I discovered that seedlings in which the clock is stopped are half the size of those with a normal clock, and that if the clock is not synchronized with the environment, seedlings are stunted with reduced photosynthesis (Dodd et al. 2005). Maximum seed production also depends on the biological clock. Since these findings are of enormous agricultural importance, understanding the functions of the circadian clock is a timely and essential part of ensuring sustainable and secure food production in the future. Critically, our knowledge of the mechanisms by which the circadian clock enhances plant performance is very limited. The experiments that we propose will provide new knowledge to address this deficit. They will investigate two unresolved questions in plant biology; (i) what aspects of cell function are controlled by the circadian clock? (ii) what processes communicate timing information from the clock to circadian-regulated aspects of cell function? (i) What aspects of cell function are controlled by the circadian clock? Our preliminary experiments indicate that current understanding of the circadian organization of plant cell function requires extensive revision with information concerning protein abundance. We will identify membrane and soluble proteins that have circadian rhythms of abundance to discover biochemical mechanisms that are optimized by circadian regulation. (ii) How does reversible phosphorylation communicate timing information from the clock to circadian-regulated proteins within the cell? Reversible phosphorylation of proteins forms an important part of cell signalling that regulates the activity of enzymes directly, controls gene expression, and controls protein degradation. Genes encoding a large number of protein kinases are circadian regulated, and examples of circadian-regulated protein kinases are present in both plants and animals. This suggests that reversible phosphorylation has the potential to signal circadian timing information within plant cells. We will use two strategies to investigate the involvement of reversible phosphorylation in circadian signalling. First, we will identify proteins that undergo circadian rhythms of phosphorylation using a technique called phosphoproteomics. Second, we will identify the protein kinases and phosphatases that underlie the rhythms of phosphorylation for the proteins we identify that are of known importance to the cell. This information will be used to understand the signalling pathway between the circadian clock and the protein that is regulated by reversible phosphorylation. By combining my expertise (PI, Dr Dodd) in the circadian regulation of cell physiology and signalling with (a) specialist technology, expertise and methods within the Proteomics Laboratory in the Department of Biology's Technology Facility and (b) expertise in discovering novel protein-protein interactions in Arabidopsis (Hybrigenics S.A.) and protein kinase signalling (Prof. Jörg Kudla, Universität Münster), this research will advance significantly our understanding of the integration of the circadian clock in plants with cell function.
植物细胞含有对植物生长和生存至关重要的生物钟,我发现时钟停止的幼苗的大小是正常时钟的幼苗的一半,如果生物钟与环境不同步,幼苗就会变小。由于光合作用减少而发育迟缓(Dodd 等人,2005),由于这些发现对农业具有重要意义,因此了解生物钟的功能是确保可持续发展的及时且重要的部分。至关重要的是,我们对生物钟增强植物性能的机制的了解非常有限,我们提出的实验将为解决这一缺陷提供新的知识。 (i) 细胞功能的哪些方面由生物钟控制? (ii) 哪些过程将时钟信息传递给细胞功能的昼夜节律调节方面? (i) 细胞功能的哪些方面由生物钟控制?我们的初步实验表明,目前对植物细胞功能昼夜节律组织的理解需要对有关蛋白质丰度的信息进行广泛修改,我们将鉴定具有丰度昼夜节律的膜和可溶性蛋白质,以发现通过昼夜节律调节优化的生化机制。 ) 可逆磷酸化如何将时钟信息传递给细胞内昼夜节律调节的蛋白质?编码大量蛋白激酶的基因受昼夜节律调节,并且昼夜节律调节蛋白激酶的例子存在于植物和动物中,这表明可逆磷酸化具有在体内发出昼夜节律信息的潜力。我们将使用两种策略来研究昼夜节律信号传导中可逆磷酸化的参与,首先,我们将使用一种技术来识别经历昼夜节律磷酸化的蛋白质。其次,我们将确定对细胞具有已知重要性的蛋白质磷酸化节律的蛋白激酶和磷酸酶。这些信息将用于了解生物钟和蛋白质之间的信号传导途径。通过将我在细胞生理学和信号传导的昼夜节律调节方面的专业知识(PI,Dodd 博士)与(a)专业技术、专业知识和方法相结合。在生物系技术设施的蛋白质组学实验室内,以及 (b) 在拟南芥 (Hybrigenics S.A.) 中发现新型蛋白质-蛋白质相互作用和蛋白激酶信号传导(Jörg Kudla 教授,明斯特大学)方面的专业知识,这项研究将显着推进我们的理解植物生物钟与细胞功能的整合。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Circadian Entrainment in Arabidopsis by the Sugar-Responsive Transcription Factor bZIP63.
  • DOI:
    10.1016/j.cub.2018.05.092
  • 发表时间:
    2018-08-20
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Frank A;Matiolli CC;Viana AJC;Hearn TJ;Kusakina J;Belbin FE;Wells Newman D;Yochikawa A;Cano-Ramirez DL;Chembath A;Cragg-Barber K;Haydon MJ;Hotta CT;Vincentz M;Webb AAR;Dodd AN
  • 通讯作者:
    Dodd AN
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Antony Dodd其他文献

How plants sense and respond to environmental cycles
植物如何感知和响应环境循环
  • DOI:
  • 发表时间:
    2017
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Antony Dodd;Hirokazu Fukuda
  • 通讯作者:
    Hirokazu Fukuda
核由来Plasmodium sigma like factor (SLF)を介したメラトニンによるアピコプラストゲノムの転写調節
褪黑素通过核疟原虫西格玛样因子(SLF)对顶质体基因组的转录调节
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    小松谷 啓介;小林 勇気;徳舛 富由樹;佐藤 恵春;Antony Dodd;田中 寛;北 潔
  • 通讯作者:
    北 潔

Antony Dodd的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Antony Dodd', 18)}}的其他基金

Light, temperature and circadian clock signal integration during leaf senescence
叶子衰老过程中的光、温度和生物钟信号整合
  • 批准号:
    BB/X014711/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.86万
  • 项目类别:
    Research Grant
Predicting plant growth in naturally fluctuating conditions
预测自然波动条件下的植物生长
  • 批准号:
    BB/Y513945/1
  • 财政年份:
    2024
  • 资助金额:
    $ 53.86万
  • 项目类别:
    Research Grant
Post-translational regulation of cell physiology by the circadian clock
生物钟对细胞生理学的翻译后调节
  • 批准号:
    BB/I005811/2
  • 财政年份:
    2012
  • 资助金额:
    $ 53.86万
  • 项目类别:
    Research Grant

相似国自然基金

RNA结合蛋白LARP1调控Sirt1“转录-翻译解偶联”在精子发生及男性不育中的作用及机制研究
  • 批准号:
    82301817
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PPARα驱动YAP翻译后修饰和相分离促进肝再生的新机制研究
  • 批准号:
    82304603
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
拟南芥中类囊体膜蛋白FtsH2/5的翻译后表达调控机制
  • 批准号:
    32370250
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
NF-kβP65介导IL2RG经糖基化蛋白翻译后调控JAK/STAT在真菌性角膜炎中的作用机制
  • 批准号:
    82360202
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Scalable and quantitative chromatin profiling from formalin-fixed paraffin-embedded samples
对福尔马林固定石蜡包埋样品进行可扩展和定量的染色质分析
  • 批准号:
    10696343
  • 财政年份:
    2023
  • 资助金额:
    $ 53.86万
  • 项目类别:
Biophysical, Structural, and Cellular Dissection of COPI-Dependent Retrograde Trafficking Using a Coronavirus Toolkit
使用冠状病毒工具包对 COPI 依赖性逆行贩运进行生物物理、结构和细胞解剖
  • 批准号:
    10646999
  • 财政年份:
    2023
  • 资助金额:
    $ 53.86万
  • 项目类别:
Exploring regulatory mechanisms of glyoxalase-1
探索乙二醛酶-1的调控机制
  • 批准号:
    10646721
  • 财政年份:
    2023
  • 资助金额:
    $ 53.86万
  • 项目类别:
Project 4 - Controlling the Latent-to-Lytic Switch in Epstein-Barr Virus
项目 4 - 控制 Epstein-Barr 病毒中的潜伏至裂解转换
  • 批准号:
    10910338
  • 财政年份:
    2023
  • 资助金额:
    $ 53.86万
  • 项目类别:
The roles of AP-1 pathway activation in NK cell development and exhaustion programming in AML
AP-1 通路激活在 NK 细胞发育和 AML 衰竭编程中的作用
  • 批准号:
    10751755
  • 财政年份:
    2023
  • 资助金额:
    $ 53.86万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了