Biochemical and genetic diversity of a critical step in the sulphur cycle - molecular studies of bacterial dimethyl sulphide production
硫循环关键步骤的生化和遗传多样性——细菌二甲硫醚生产的分子研究
基本信息
- 批准号:BB/H002642/1
- 负责人:
- 金额:$ 45.73万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2010
- 资助国家:英国
- 起止时间:2010 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The gas dimethyl sulphide (DMS for short) does strange things to animals. Tiny shrimp-like crustaceans, some seabirds and even harbour seals get excited by it, since its aroma is a sign of nearby food. And, for the general populace, it is a much-loved memento of days by the beach, being part of the evocative smell of the seaside. But DMS is much more important than that. It represents the major route for transfer of sulphur from the oceans to land and, as such, is a critical part of the natural sulphur cycle, in which living organisms transfer sulphur from one form to another. You may not know it, but many of the molecules in your body contain sulphur and without it we cannot survive. DMS is also important for our environment because when it gets into the air, it is oxidised to form other compounds that act as 'seeds' for cloud formation over the oceans, just as flecks of dust set off crystallisation in crystal gardens. This may affect our climate, by reducing the amounts of light that reaches Earth's surface, perhaps even causing 'global diming'. Furthermore, its oxidation contributes significantly to the phenomenon of acid rain. DMS is made in huge amounts in the oceans - around 300 million tons each year. It is generated by microbes that use another molecule, with a ridiculously long name - dimethylsulphoniopropionate, (DMSP) - as a food source. This DMSP is made by seaweeds and the masses of plankton in the oceans, helping them to survive the stresses of life at sea. When they die, the DMSP is liberated, and is then eaten by some bacteria and fungi, and some of these produce the DMS as a by-product. Other bacteria are more genteel - they devour DMSP in a very different way, which does not produce this microbial sulphurous burp. Given the importance of DMS, it is quite astonishing that today we know so little about genetic basis of its prodution. However, scientists at the University of East Anglia have recently made an important breakthrough by identifying the bacterial genes that are involved in making the DMS. In doing this, they have uncovered at least three completely different ways in which bacteria can make this gas. Not only that, but in the natural environment, these genes can be transferred among very different marine bacteria. Even more remarkably, they were transferred from some bacteria to completely different life forms, such as fungi. And, some of these enzymes, and the organisms that contain them, are of types that had never been suspected of being involved in this important process. Other researchers, at the University of Georgia, have done related work on the genes that are important for the pathway that does not make DMS. Using that information, and their own findings, the UEA group have found one marine bacterium - called Roseovarius nubinhibens - which is a real glutton for DMSP. It has two, possibly three, different ways to make DMS and, as if that were not enough, it can also break down DMSP by the other pathway that does not make DMS. The UEA group now wants to look at the properties of the enzymes that make DMS in this species and to see how a single bacterium decides which of its different pathways it should use under different circumstances - the concentration of the DMSP that is available, the acidity of the medium, the cell density and so on. By learning about these features on these newly discovered systems, we will be much better placed to understand how and why bacteria choose to break down the DMSP in one way, rather than another, and why some make lots of the important gas, but others only make a little. This knowledge will provide great new insights into the natural cycling of one of the most important elements for life on earth.
气体二甲基硫化物(简称DMS)对动物造成了奇怪的事情。小虾状的甲壳类动物,一些海鸟甚至港口海豹会对它感到兴奋,因为它的香气是附近食物的标志。而且,对于普通民众来说,这是海滩上备受喜爱的日子,是海边令人回味的气味的一部分。但是DMS比这重要得多。它代表了从海洋转移到陆地的主要途径,因此是天然硫循环的关键部分,其中活性生物体将硫从一种形式转移到另一种形式。您可能不知道,但是体内的许多分子都含有硫,没有它,我们将无法生存。 DMS对我们的环境也很重要,因为当它进入空气时,它被氧化以形成其他化合物,这些化合物是海洋上云形成的“种子”,就像尘埃落体在水晶花园中散发出结晶一样。这可能会通过减少到达地球表面的光量,甚至导致“全球昏迷”的光线来影响我们的气候。此外,其氧化对酸雨的现象显着促进。 DMS在海洋中大量制造 - 每年约3亿吨。它是由使用另一个分子的微生物产生的,其名称荒谬 - 二甲基磺胺丙酸(DMSP)作为食物来源。该DMSP由海藻和海洋中浮游生物的群体制成,帮助他们在海上生活的压力中生存。当它们死亡时,DMSP将被解放,然后被一些细菌和真菌食用,其中一些会产生DMS作为副产品。其他细菌更绅士 - 它们以截然不同的方式吞噬DMSP,这不会产生这种微生物硫磺bur。鉴于DMS的重要性,令人惊讶的是,今天我们对其产量的遗传基础知之甚少。但是,东英吉利大学的科学家最近通过识别涉及制造DMS的细菌基因,取得了重要的突破。通过这样做,他们至少发现了细菌可以使这种气体的三种完全不同的方式。不仅如此,在自然环境中,这些基因可以在非常不同的海洋细菌中转移。更值得注意的是,它们从某些细菌转移到了完全不同的生命形式,例如真菌。而且,其中一些酶以及包含它们的生物是从未涉嫌参与这一重要过程的类型。佐治亚大学的其他研究人员在对不制造DMS的途径上很重要的基因上进行了相关工作。使用这些信息及其自己的发现,UEA组发现了一种海洋细菌 - 称为Roseovarius nubin usinens-这是DMSP的真正glutton。它有两种制造DM的方法,可能是三种不同的方法,而且似乎还不够,它也可以通过其他不会产生DMS的途径来分解DMSP。现在,UEA组希望查看在该物种中产生DM的酶的性质,并查看单个细菌在不同情况下应使用哪种不同的途径 - 可用的DMSP的浓度,培养基的酸度,细胞密度等。通过在这些新发现的系统上了解这些功能,我们将更好地理解细菌如何以及为什么选择以一种方式分解DMSP,而不是另一种方式,以及为什么有些人会产生很多重要的气体,而另一些则只会产生一点。这些知识将为地球上最重要的元素之一的自然循环提供巨大的新见解。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The Ruegeria pomeroyi acuI gene has a role in DMSP catabolism and resembles yhdH of E. coli and other bacteria in conferring resistance to acrylate.
- DOI:10.1371/journal.pone.0035947
- 发表时间:2012
- 期刊:
- 影响因子:3.7
- 作者:Todd JD;Curson AR;Sullivan MJ;Kirkwood M;Johnston AW
- 通讯作者:Johnston AW
Who can cleave DMSP?
- DOI:10.1126/science.aac5661
- 发表时间:2015-06
- 期刊:
- 影响因子:56.9
- 作者:A. Johnston
- 通讯作者:A. Johnston
Screening of metagenomic and genomic libraries reveals three classes of bacterial enzymes that overcome the toxicity of acrylate.
- DOI:10.1371/journal.pone.0097660
- 发表时间:2014
- 期刊:
- 影响因子:3.7
- 作者:Curson AR;Burns OJ;Voget S;Daniel R;Todd JD;McInnis K;Wexler M;Johnston AW
- 通讯作者:Johnston AW
Enzymatic breakage of dimethylsulfoniopropionate - a signature molecule for life at sea
- DOI:10.1016/j.cbpa.2016.01.011
- 发表时间:2016-04-01
- 期刊:
- 影响因子:7.8
- 作者:Johnston, Andrew W. B.;Green, Robert T.;Todd, Jonathan D.
- 通讯作者:Todd, Jonathan D.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Andrew Johnston其他文献
Interfaces for musical expression based on simulated physical models
基于模拟物理模型的音乐表达界面
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Andrew Johnston - 通讯作者:
Andrew Johnston
The Engagement of Entrepreneurial Firms with Universities: Network formation, innovation and resilience
创业公司与大学的合作:网络形成、创新和韧性
- DOI:
10.1177/030630701404000103 - 发表时间:
2014 - 期刊:
- 影响因子:2.1
- 作者:
R. Huggins;Daniel Prokop;Rebecca Steffenson;Andrew Johnston;Nick Clifton - 通讯作者:
Nick Clifton
Why Is Modern Capitalism Irresponsible and What Would Make It More Responsible? A Company Law Perspective
为什么现代资本主义是不负责任的以及什么让它变得更负责任?
- DOI:
10.1080/09615768.2018.1478201 - 发表时间:
2018 - 期刊:
- 影响因子:0
- 作者:
Andrew Johnston;L. Talbot - 通讯作者:
L. Talbot
EC Regulation of Corporate Governance: Conclusion: the genius of EC corporate governance regulation
EC 公司治理监管:结论:EC 公司治理监管的天才
- DOI:
10.1017/cbo9780511770753.011 - 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Andrew Johnston - 通讯作者:
Andrew Johnston
Independent Directors and Team Production in Japanese Corporate Governance
日本公司治理中的独立董事与团队建设
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0.8
- 作者:
Andrew Johnston;K. Miyamoto - 通讯作者:
K. Miyamoto
Andrew Johnston的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Andrew Johnston', 18)}}的其他基金
Making and breaking DMS by salt marsh microbes - populations and pathways, revealed by stable isotope probing and molecular techniques
盐沼微生物制造和破坏 DMS - 通过稳定同位素探测和分子技术揭示的种群和途径
- 批准号:
NE/H008586/1 - 财政年份:2010
- 资助金额:
$ 45.73万 - 项目类别:
Research Grant
Sequencing the Sea Sulphur Cycle
对海硫循环进行测序
- 批准号:
NE/F001304/1 - 财政年份:2008
- 资助金额:
$ 45.73万 - 项目类别:
Research Grant
Sequencing the Sea Sulphur Cycle
对海硫循环进行测序
- 批准号:
NE/F001339/1 - 财政年份:2008
- 资助金额:
$ 45.73万 - 项目类别:
Research Grant
Sequencing the Sea Sulphur Cycle
对海硫循环进行测序
- 批准号:
NE/F001312/1 - 财政年份:2008
- 资助金额:
$ 45.73万 - 项目类别:
Research Grant
Cloning the smell of the seaside - molecular genetics of dimethyl sulphide production by bacteria
克隆海边的气味——细菌产生二甲硫醚的分子遗传学
- 批准号:
BB/E01688X/1 - 财政年份:2007
- 资助金额:
$ 45.73万 - 项目类别:
Research Grant
Functional and molecular biodiversity of the bacterial production of the climate-changing gas dimethyl sulphide.
改变气候的气体二甲硫醚的细菌生产的功能和分子生物多样性。
- 批准号:
NE/E018033/1 - 财政年份:2007
- 资助金额:
$ 45.73万 - 项目类别:
Research Grant
Molecular analysis of gene regulators in the remarkable iron-ome of the symbiotic bacterium Rhizobium.
共生细菌根瘤菌的显着铁组中基因调节因子的分子分析。
- 批准号:
BB/E003400/1 - 财政年份:2006
- 资助金额:
$ 45.73万 - 项目类别:
Research Grant
相似国自然基金
中国斑翅果蝇自然种群多样性及对果实寄主适应性的分子遗传机制
- 批准号:32370662
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
条斑紫菜减数分裂重组模式及其对群体遗传多样性的影响
- 批准号:42306116
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玛纳斯河流域野鸟源禽流感病毒遗传多样性和重配模式的研究
- 批准号:32360006
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
适应性渐滲对栎属多样性的影响及其遗传机制的探索
- 批准号:32371689
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
中国南方红汁乳菇的群体遗传多样性与亲缘关系研究
- 批准号:32360153
- 批准年份:2023
- 资助金额:32.00 万元
- 项目类别:地区科学基金项目
相似海外基金
DSpace: Utilizing Data Science to Predict and Improve Health Outcomes in Pediatric HIV
DSpace:利用数据科学预测和改善儿童艾滋病毒的健康结果
- 批准号:
10749123 - 财政年份:2023
- 资助金额:
$ 45.73万 - 项目类别:
Targeting glycoprotein (G) domain-III for pan-lyssavirus nanobody therapeutics
靶向糖蛋白 (G) 结构域 III 用于泛狂犬病病毒纳米抗体治疗
- 批准号:
10667756 - 财政年份:2023
- 资助金额:
$ 45.73万 - 项目类别:
The Helicase and Nucleic Acid-based Machines Conference: Structure, Mechanism, Regulation and Roles in Human Diseases
解旋酶和核酸机器会议:结构、机制、调节和在人类疾病中的作用
- 批准号:
10753877 - 财政年份:2023
- 资助金额:
$ 45.73万 - 项目类别:
Contributions of autophagy-related genes in lupus
自噬相关基因在狼疮中的贡献
- 批准号:
10682136 - 财政年份:2023
- 资助金额:
$ 45.73万 - 项目类别: